U-PASS: An uncertainty-guided deep learning pipeline for automated sleep staging

计算机科学 机器学习 人工智能 可靠性(半导体) 管道(软件) 过程(计算) 深度学习 睡眠阶段 多导睡眠图 医学 呼吸暂停 程序设计语言 功率(物理) 物理 量子力学 精神科 操作系统
作者
Elisabeth Heremans,Nabeel Seedat,Bertien Buyse,Dries Testelmans,Mihaela van der Schaar,Maarten De Vos
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:171: 108205-108205
标识
DOI:10.1016/j.compbiomed.2024.108205
摘要

With the increasing prevalence of machine learning in critical fields like healthcare, ensuring the safety and reliability of these systems is crucial. Estimating uncertainty plays a vital role in enhancing reliability by identifying areas of high and low confidence and reducing the risk of errors. This study introduces U-PASS, a specialized human-centered machine learning pipeline tailored for clinical applications, which effectively communicates uncertainty to clinical experts and collaborates with them to improve predictions. U-PASS incorporates uncertainty estimation at every stage of the process, including data acquisition, training, and model deployment. Training is divided into a supervised pre-training step and a semi-supervised recording-wise finetuning step. We apply U-PASS to the challenging task of sleep staging and demonstrate that it systematically improves performance at every stage. By optimizing the training dataset, actively seeking feedback from domain experts for informative samples, and deferring the most uncertain samples to experts, U-PASS achieves an impressive expert-level accuracy of 85% on a challenging clinical dataset of elderly sleep apnea patients. This represents a significant improvement over the starting point at 75% accuracy. The largest improvement gain is due to the deferral of uncertain epochs to a sleep expert. U-PASS presents a promising AI approach to incorporating uncertainty estimation in machine learning pipelines, improving their reliability and unlocking their potential in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
June完成签到,获得积分20
1秒前
酷波er应助虚幻龙猫采纳,获得10
3秒前
3秒前
深情安青应助一方通行采纳,获得10
3秒前
3秒前
Orange应助虾条采纳,获得10
3秒前
3秒前
逍遥猪皮完成签到,获得积分10
4秒前
4秒前
Hetao完成签到,获得积分10
4秒前
敏感夏天发布了新的文献求助10
4秒前
巧克力饼干完成签到,获得积分10
4秒前
含蓄的明雪应助神奇阳光采纳,获得10
4秒前
5秒前
打打应助回答采纳,获得10
6秒前
6秒前
龙龙ff11_完成签到,获得积分10
7秒前
贪玩的月饼完成签到 ,获得积分10
7秒前
Xxx发布了新的文献求助10
9秒前
li-naer发布了新的文献求助10
9秒前
10秒前
leslie完成签到,获得积分10
10秒前
琦qi发布了新的文献求助10
10秒前
10秒前
大模型应助悦耳的芒果采纳,获得10
10秒前
渔舟唱晚完成签到,获得积分10
10秒前
tl完成签到,获得积分10
11秒前
异祺发布了新的文献求助10
11秒前
芋圆完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
斯文败类应助康zai采纳,获得10
14秒前
Neon0524应助li-naer采纳,获得10
14秒前
15秒前
1111发布了新的文献求助10
15秒前
Cc完成签到,获得积分10
15秒前
tz完成签到,获得积分10
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905