MucLiPred: Multi-Level Contrastive Learning for Predicting Nucleic Acid Binding Residues of Proteins

计算生物学 蛋白质-蛋白质相互作用 化学 化学空间 对偶(语法数字) 生物化学 分子 鉴定(生物学) 人工智能 药物发现 计算机科学 生物 艺术 植物 文学类 有机化学
作者
Jiashuo Zhang,Ruheng Wang,Leyi Wei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (3): 1050-1065 被引量:1
标识
DOI:10.1021/acs.jcim.3c01471
摘要

Protein–molecule interactions play a crucial role in various biological functions, with their accurate prediction being pivotal for drug discovery and design processes. Traditional methods for predicting protein–molecule interactions are limited. Some can only predict interactions with a specific molecule, restricting their applicability, while others target multiple molecule types but fail to efficiently process diverse interaction information, leading to complexity and inefficiency. This study presents a novel deep learning model, MucLiPred, equipped with a dual contrastive learning mechanism aimed at improving the prediction of multiple molecule-protein interactions and the identification of potential molecule-binding residues. The residue-level paradigm focuses on differentiating binding from non-binding residues, illuminating detailed local interactions. The type-level paradigm, meanwhile, analyzes overarching contexts of molecule types, like DNA or RNA, ensuring that representations of identical molecule types gravitate closer in the representational space, bolstering the model's proficiency in discerning interaction motifs. This dual approach enables comprehensive multi-molecule predictions, elucidating the relationships among different molecule types and strengthening precise protein–molecule interaction predictions. Empirical evidence demonstrates MucLiPred's superiority over existing models in robustness and prediction accuracy. The integration of dual contrastive learning techniques amplifies its capability to detect potential molecule-binding residues with precision. Further optimization, separating representational and classification tasks, has markedly improved its performance. MucLiPred thus represents a significant advancement in protein–molecule interaction prediction, setting a new precedent for future research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lxx关闭了Lxx文献求助
1秒前
专一的小海豚完成签到,获得积分10
2秒前
amy完成签到,获得积分10
2秒前
机智的研究者完成签到,获得积分10
4秒前
4秒前
依然完成签到,获得积分10
4秒前
5秒前
典雅的酬海完成签到,获得积分10
5秒前
6秒前
HJJ完成签到,获得积分10
6秒前
李小狼不浪完成签到,获得积分10
6秒前
6秒前
Jam发布了新的文献求助10
9秒前
YQQ发布了新的文献求助10
10秒前
FashionBoy应助红烛暖月色采纳,获得10
10秒前
11秒前
彗星入梦发布了新的文献求助10
12秒前
13秒前
饱满冷卉发布了新的文献求助20
14秒前
15秒前
18秒前
18秒前
淡淡从阳完成签到,获得积分10
19秒前
情怀应助谷雨秋采纳,获得10
19秒前
zzzzzzx发布了新的文献求助10
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
23秒前
maclogos发布了新的文献求助10
23秒前
23秒前
田様应助qdd采纳,获得10
24秒前
蓝羽发布了新的文献求助10
25秒前
陶醉山灵发布了新的文献求助10
26秒前
26秒前
灼灼朗朗完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377