A meta‐analysis of diabetes risk prediction models applied to prediabetes screening

糖尿病前期 医学 检查表 糖尿病 荟萃分析 梅德林 预测建模 人口 系统回顾 2型糖尿病 内科学 环境卫生 计算机科学 机器学习 心理学 内分泌学 生物 生物化学 认知心理学
作者
Yujin Liu,Sunrui Yu,Wenming Feng,Hangfeng Mo,Yuting Hua,Mei Zhang,Zhichao Zhu,Xiaoping Zhang,Zhen Wu,Lanzhen Zheng,Xiaoqiu Wu,Jiantong Shen,Wei Qiu,Jianlin Lou
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
被引量:3
标识
DOI:10.1111/dom.15457
摘要

Abstract Aim To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. Methods The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS‐2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. Results A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. Conclusions Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡菠萝发布了新的文献求助10
1秒前
jkdi完成签到,获得积分10
2秒前
翔96完成签到,获得积分10
2秒前
2秒前
野生狐狸发布了新的文献求助10
3秒前
ggjhgh完成签到,获得积分20
3秒前
lishi完成签到,获得积分10
3秒前
周兰兰发布了新的文献求助10
3秒前
4秒前
4秒前
qqy发布了新的文献求助10
4秒前
4秒前
涵Allen完成签到 ,获得积分10
5秒前
6秒前
叁壹捌发布了新的文献求助10
7秒前
LM发布了新的文献求助10
7秒前
浪者漫心完成签到,获得积分10
8秒前
尺素寸心发布了新的文献求助10
8秒前
lhyzgsy关注了科研通微信公众号
9秒前
bkagyin应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
不配.应助科研通管家采纳,获得20
9秒前
华仔应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
咖啡豆应助科研通管家采纳,获得60
10秒前
Orange应助科研通管家采纳,获得30
10秒前
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
11秒前
完美世界应助搞怪的流沙采纳,获得10
11秒前
hehe完成签到,获得积分10
12秒前
坦率面包发布了新的文献求助10
12秒前
所所应助尺素寸心采纳,获得10
13秒前
在水一方应助尺素寸心采纳,获得10
13秒前
14秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194