A meta‐analysis of diabetes risk prediction models applied to prediabetes screening

糖尿病前期 医学 检查表 糖尿病 荟萃分析 梅德林 预测建模 人口 系统回顾 2型糖尿病 内科学 环境卫生 计算机科学 机器学习 心理学 内分泌学 法学 认知心理学 政治学
作者
Yujin Liu,Sunrui Yu,Wenming Feng,Hangfeng Mo,Yuting Hua,Mei Zhang,Zhichao Zhu,Xiaoping Zhang,Zhen Wu,Lanzhen Zheng,Xiaoqiu Wu,Jiantong Shen,Wei Qiu,Jianlin Lou
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (5): 1593-1604 被引量:4
标识
DOI:10.1111/dom.15457
摘要

Abstract Aim To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. Methods The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS‐2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. Results A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. Conclusions Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
震动的涵瑶完成签到,获得积分20
2秒前
WYF发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
weirb发布了新的文献求助30
6秒前
科研通AI5应助学术草履虫采纳,获得10
6秒前
6秒前
Panda发布了新的文献求助10
6秒前
华子黄发布了新的文献求助10
7秒前
7秒前
7秒前
蝈蝈完成签到,获得积分20
7秒前
8秒前
yaya发布了新的文献求助10
9秒前
科研通AI2S应助神奇的种子采纳,获得10
10秒前
慕青应助顺心的水之采纳,获得10
10秒前
12秒前
2_3_10发布了新的文献求助10
12秒前
微笑耳机发布了新的文献求助10
12秒前
无花果应助qiqi1111采纳,获得10
12秒前
刻苦沛芹发布了新的文献求助10
13秒前
老六完成签到 ,获得积分10
15秒前
Stella发布了新的文献求助10
15秒前
万能图书馆应助11111采纳,获得10
19秒前
高高完成签到 ,获得积分10
19秒前
20秒前
九天发布了新的文献求助10
20秒前
爆米花应助正直的龙五采纳,获得10
21秒前
脑洞疼应助温婉的香菇采纳,获得10
22秒前
22秒前
Panda完成签到 ,获得积分10
24秒前
第五元素完成签到,获得积分10
24秒前
qiqi1111发布了新的文献求助10
25秒前
25秒前
小仙女212完成签到,获得积分10
25秒前
tianzhanggong发布了新的文献求助30
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442