A meta‐analysis of diabetes risk prediction models applied to prediabetes screening

糖尿病前期 医学 检查表 糖尿病 荟萃分析 梅德林 预测建模 人口 系统回顾 2型糖尿病 内科学 环境卫生 计算机科学 机器学习 心理学 内分泌学 法学 认知心理学 政治学
作者
Yujin Liu,Sunrui Yu,Wenming Feng,Hangfeng Mo,Yuting Hua,Mei Zhang,Zhichao Zhu,Xiaoping Zhang,Zhen Wu,Lanzhen Zheng,Xiaoqiu Wu,Jiantong Shen,Wei Qiu,Jianlin Lou
出处
期刊:Diabetes, Obesity and Metabolism [Wiley]
卷期号:26 (5): 1593-1604 被引量:9
标识
DOI:10.1111/dom.15457
摘要

Abstract Aim To provide a systematic overview of diabetes risk prediction models used for prediabetes screening to promote primary prevention of diabetes. Methods The Cochrane, PubMed, Embase, Web of Science and China National Knowledge Infrastructure (CNKI) databases were searched for a comprehensive search period of 30 August 30, 2023, and studies involving diabetes prediction models for screening prediabetes risk were included in the search. The Quality Assessment Checklist for Diagnostic Studies (QUADAS‐2) tool was used for risk of bias assessment and Stata and R software were used to pool model effect sizes. Results A total of 29 375 articles were screened, and finally 20 models from 24 studies were included in the systematic review. The most common predictors were age, body mass index, family history of diabetes, history of hypertension, and physical activity. Regarding the indicators of model prediction performance, discrimination and calibration were only reported in 79.2% and 4.2% of studies, respectively, resulting in significant heterogeneity in model prediction results, which may be related to differences between model predictor combinations and lack of important methodological information. Conclusions Numerous models are used to predict diabetes, and as there is an association between prediabetes and diabetes, researchers have also used such models for screening the prediabetic population. Although it is a new clinical practice to explore, differences in glycaemic metabolic profiles, potential complications, and methods of intervention between the two populations cannot be ignored, and such differences have led to poor validity and accuracy of the models. Therefore, there is no recommended optimal model, and it is not recommended to use existing models for risk identification in alternative populations; future studies should focus on improving the clinical relevance and predictive performance of existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
LDD完成签到,获得积分10
3秒前
3秒前
4秒前
随遇而安完成签到 ,获得积分10
4秒前
4秒前
科研小虫完成签到,获得积分10
4秒前
5秒前
飞扬完成签到,获得积分10
6秒前
希望天下0贩的0应助vv采纳,获得10
6秒前
7秒前
卷卷发布了新的文献求助10
8秒前
涵张发布了新的文献求助40
8秒前
昵称什么的不重要啦完成签到 ,获得积分10
8秒前
山君发布了新的文献求助10
10秒前
香蕉觅云应助鱻鱼鱻采纳,获得10
11秒前
慕慕倾完成签到,获得积分10
12秒前
12秒前
可爱的函函应助Dr.Liu采纳,获得10
13秒前
ddsgsd完成签到 ,获得积分10
13秒前
活着完成签到 ,获得积分10
14秒前
Lucas应助wangcc采纳,获得10
16秒前
ZJF完成签到,获得积分10
16秒前
小马甲应助sun采纳,获得10
16秒前
知足肠乐完成签到,获得积分0
17秒前
黄晓龙发布了新的文献求助10
17秒前
18秒前
月亮发布了新的文献求助10
19秒前
0411345完成签到,获得积分10
21秒前
李健的小迷弟应助炸弹采纳,获得10
22秒前
23秒前
Jian发布了新的文献求助10
24秒前
十八鱼发布了新的文献求助10
24秒前
自信冰凡完成签到,获得积分10
24秒前
无心的人雄完成签到 ,获得积分10
27秒前
奋斗访天完成签到,获得积分10
28秒前
ihonest完成签到,获得积分0
29秒前
喜悦的雪一完成签到,获得积分10
29秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5214115
求助须知:如何正确求助?哪些是违规求助? 4389728
关于积分的说明 13667819
捐赠科研通 4251105
什么是DOI,文献DOI怎么找? 2332390
邀请新用户注册赠送积分活动 1330049
关于科研通互助平台的介绍 1283696