亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimal Treatment Strategies for Critical Patients with Deep Reinforcement Learning

强化学习 计算机科学 人工智能 深度学习 马尔可夫决策过程 机器学习 重症监护 个性化医疗 重症监护医学 医学 生物信息学 数学 生物 统计 马尔可夫过程
作者
Simi Job,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Jianming Yong,Qing Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-22 被引量:4
标识
DOI:10.1145/3643856
摘要

Personalized clinical decision support systems are increasingly being adopted due to the emergence of data-driven technologies, with this approach now gaining recognition in critical care. The task of incorporating diverse patient conditions and treatment procedures into critical care decision-making can be challenging due to the heterogeneous nature of medical data. Advances in Artificial Intelligence (AI), particularly Reinforcement Learning (RL) techniques, enables the development of personalized treatment strategies for severe illnesses by using a learning agent to recommend optimal policies. In this study, we propose a Deep Reinforcement Learning (DRL) model with a tailored reward function and an LSTM-GRU-derived state representation to formulate optimal treatment policies for vasopressor administration in stabilizing patient physiological states in critical care settings. Using an ICU dataset and the Medical Information Mart for Intensive Care (MIMIC-III) dataset, we focus on patients with Acute Respiratory Distress Syndrome (ARDS) that has led to Sepsis, to derive optimal policies that can prioritize patient recovery over patient survival. Both the DDQN ( RepDRL-DDQN ) and Dueling DDQN ( RepDRL-DDDQN ) versions of the DRL model surpass the baseline performance, with the proposed model’s learning agent achieving an optimal learning process across our performance measuring schemes. The robust state representation served as the foundation for enhancing the model’s performance, ultimately providing an optimal treatment policy focused on rapid patient recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
17秒前
41秒前
1分钟前
yanjun发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助RC采纳,获得10
1分钟前
乐乐应助RC采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
顾矜应助中原第一深情采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
sunialnd完成签到,获得积分10
3分钟前
SarahG发布了新的文献求助10
3分钟前
3分钟前
3分钟前
聪明怜阳发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
涛1完成签到 ,获得积分10
5分钟前
6分钟前
xt发布了新的文献求助30
6分钟前
7分钟前
JoeyJin完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
SciGPT应助科研通管家采纳,获得10
8分钟前
BowieHuang应助无风风采纳,获得10
8分钟前
8分钟前
9分钟前
无极微光应助无风风采纳,获得20
9分钟前
BowieHuang应助科研通管家采纳,获得10
10分钟前
BowieHuang应助科研通管家采纳,获得10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795377
捐赠科研通 4633274
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723