强化学习
计算机科学
人工智能
深度学习
马尔可夫决策过程
机器学习
重症监护
个性化医疗
重症监护医学
医学
生物信息学
数学
生物
统计
马尔可夫过程
作者
Simi Job,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Jianming Yong,Qing Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology
[Association for Computing Machinery]
日期:2024-02-01
卷期号:15 (2): 1-22
被引量:2
摘要
Personalized clinical decision support systems are increasingly being adopted due to the emergence of data-driven technologies, with this approach now gaining recognition in critical care. The task of incorporating diverse patient conditions and treatment procedures into critical care decision-making can be challenging due to the heterogeneous nature of medical data. Advances in Artificial Intelligence (AI), particularly Reinforcement Learning (RL) techniques, enables the development of personalized treatment strategies for severe illnesses by using a learning agent to recommend optimal policies. In this study, we propose a Deep Reinforcement Learning (DRL) model with a tailored reward function and an LSTM-GRU-derived state representation to formulate optimal treatment policies for vasopressor administration in stabilizing patient physiological states in critical care settings. Using an ICU dataset and the Medical Information Mart for Intensive Care (MIMIC-III) dataset, we focus on patients with Acute Respiratory Distress Syndrome (ARDS) that has led to Sepsis, to derive optimal policies that can prioritize patient recovery over patient survival. Both the DDQN ( RepDRL-DDQN ) and Dueling DDQN ( RepDRL-DDDQN ) versions of the DRL model surpass the baseline performance, with the proposed model’s learning agent achieving an optimal learning process across our performance measuring schemes. The robust state representation served as the foundation for enhancing the model’s performance, ultimately providing an optimal treatment policy focused on rapid patient recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI