Optimal Treatment Strategies for Critical Patients with Deep Reinforcement Learning

强化学习 计算机科学 人工智能 深度学习 马尔可夫决策过程 机器学习 重症监护 个性化医疗 重症监护医学 医学 生物信息学 数学 生物 统计 马尔可夫过程
作者
Simi Job,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Jianming Yong,Qing Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-22 被引量:4
标识
DOI:10.1145/3643856
摘要

Personalized clinical decision support systems are increasingly being adopted due to the emergence of data-driven technologies, with this approach now gaining recognition in critical care. The task of incorporating diverse patient conditions and treatment procedures into critical care decision-making can be challenging due to the heterogeneous nature of medical data. Advances in Artificial Intelligence (AI), particularly Reinforcement Learning (RL) techniques, enables the development of personalized treatment strategies for severe illnesses by using a learning agent to recommend optimal policies. In this study, we propose a Deep Reinforcement Learning (DRL) model with a tailored reward function and an LSTM-GRU-derived state representation to formulate optimal treatment policies for vasopressor administration in stabilizing patient physiological states in critical care settings. Using an ICU dataset and the Medical Information Mart for Intensive Care (MIMIC-III) dataset, we focus on patients with Acute Respiratory Distress Syndrome (ARDS) that has led to Sepsis, to derive optimal policies that can prioritize patient recovery over patient survival. Both the DDQN ( RepDRL-DDQN ) and Dueling DDQN ( RepDRL-DDDQN ) versions of the DRL model surpass the baseline performance, with the proposed model’s learning agent achieving an optimal learning process across our performance measuring schemes. The robust state representation served as the foundation for enhancing the model’s performance, ultimately providing an optimal treatment policy focused on rapid patient recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wandali发布了新的文献求助200
刚刚
1秒前
幻海潮生发布了新的文献求助10
2秒前
陈展峰完成签到,获得积分10
3秒前
感动访天发布了新的文献求助10
3秒前
脑洞疼应助ling采纳,获得10
3秒前
大花2完成签到,获得积分10
4秒前
李爱国应助晴朗采纳,获得10
4秒前
5秒前
Ghiocel完成签到,获得积分10
6秒前
orixero应助酷炫大树采纳,获得10
6秒前
陈秋妮关注了科研通微信公众号
6秒前
7秒前
7秒前
恋风恋歌发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
bwh发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
霜降发布了新的文献求助10
12秒前
12秒前
星辰大海应助swh采纳,获得10
13秒前
野云关注了科研通微信公众号
14秒前
糊涂pipi完成签到,获得积分10
14秒前
写了能发发布了新的文献求助10
14秒前
Soulmate发布了新的文献求助10
15秒前
wangqinlei完成签到 ,获得积分10
15秒前
16秒前
胡莱完成签到,获得积分20
17秒前
PUPU完成签到,获得积分10
17秒前
18秒前
Owen应助大海采纳,获得10
19秒前
木木发布了新的文献求助150
19秒前
qing完成签到,获得积分10
19秒前
liuguanfeng完成签到,获得积分20
21秒前
朴实曼岚发布了新的文献求助10
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469451
求助须知:如何正确求助?哪些是违规求助? 4572568
关于积分的说明 14336194
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465076
邀请新用户注册赠送积分活动 1453596
关于科研通互助平台的介绍 1428091