Optimal Treatment Strategies for Critical Patients with Deep Reinforcement Learning

强化学习 计算机科学 人工智能 深度学习 马尔可夫决策过程 机器学习 重症监护 个性化医疗 重症监护医学 医学 生物信息学 数学 生物 统计 马尔可夫过程
作者
Simi Job,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Jianming Yong,Qing Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-22 被引量:4
标识
DOI:10.1145/3643856
摘要

Personalized clinical decision support systems are increasingly being adopted due to the emergence of data-driven technologies, with this approach now gaining recognition in critical care. The task of incorporating diverse patient conditions and treatment procedures into critical care decision-making can be challenging due to the heterogeneous nature of medical data. Advances in Artificial Intelligence (AI), particularly Reinforcement Learning (RL) techniques, enables the development of personalized treatment strategies for severe illnesses by using a learning agent to recommend optimal policies. In this study, we propose a Deep Reinforcement Learning (DRL) model with a tailored reward function and an LSTM-GRU-derived state representation to formulate optimal treatment policies for vasopressor administration in stabilizing patient physiological states in critical care settings. Using an ICU dataset and the Medical Information Mart for Intensive Care (MIMIC-III) dataset, we focus on patients with Acute Respiratory Distress Syndrome (ARDS) that has led to Sepsis, to derive optimal policies that can prioritize patient recovery over patient survival. Both the DDQN ( RepDRL-DDQN ) and Dueling DDQN ( RepDRL-DDDQN ) versions of the DRL model surpass the baseline performance, with the proposed model’s learning agent achieving an optimal learning process across our performance measuring schemes. The robust state representation served as the foundation for enhancing the model’s performance, ultimately providing an optimal treatment policy focused on rapid patient recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
刚刚
华仔应助SunGuangkai采纳,获得10
1秒前
1秒前
nana发布了新的文献求助10
1秒前
2秒前
Sunshine发布了新的文献求助10
2秒前
2秒前
xh发布了新的文献求助10
2秒前
刘刘完成签到 ,获得积分20
2秒前
JiahaoRao应助活泼又晴采纳,获得50
2秒前
3秒前
puzhongjiMiQ完成签到,获得积分10
3秒前
Pursue发布了新的文献求助10
3秒前
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
4秒前
浮游应助Annnnnn采纳,获得10
4秒前
hehsk发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
灵运完成签到,获得积分10
6秒前
南宫誉发布了新的文献求助10
6秒前
6秒前
6秒前
玄天明月发布了新的文献求助10
7秒前
puzhongjiMiQ发布了新的文献求助10
7秒前
21完成签到,获得积分10
7秒前
000发布了新的文献求助10
7秒前
路纹婷完成签到,获得积分10
7秒前
7秒前
思源应助小艾采纳,获得10
8秒前
8秒前
53完成签到,获得积分10
8秒前
FashionBoy应助苗儿采纳,获得10
9秒前
陆程文发布了新的文献求助10
9秒前
sonia发布了新的文献求助10
9秒前
zhaolee完成签到 ,获得积分10
10秒前
小蘑菇应助hehsk采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545721
求助须知:如何正确求助?哪些是违规求助? 4631761
关于积分的说明 14622099
捐赠科研通 4573427
什么是DOI,文献DOI怎么找? 2507524
邀请新用户注册赠送积分活动 1484223
关于科研通互助平台的介绍 1455530