Optimal Treatment Strategies for Critical Patients with Deep Reinforcement Learning

强化学习 计算机科学 人工智能 深度学习 马尔可夫决策过程 机器学习 重症监护 个性化医疗 重症监护医学 医学 生物信息学 统计 数学 生物 马尔可夫过程
作者
Simi Job,Xiaohui Tao,Lin Li,Haoran Xie,Taotao Cai,Jianming Yong,Qing Li
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:15 (2): 1-22 被引量:4
标识
DOI:10.1145/3643856
摘要

Personalized clinical decision support systems are increasingly being adopted due to the emergence of data-driven technologies, with this approach now gaining recognition in critical care. The task of incorporating diverse patient conditions and treatment procedures into critical care decision-making can be challenging due to the heterogeneous nature of medical data. Advances in Artificial Intelligence (AI), particularly Reinforcement Learning (RL) techniques, enables the development of personalized treatment strategies for severe illnesses by using a learning agent to recommend optimal policies. In this study, we propose a Deep Reinforcement Learning (DRL) model with a tailored reward function and an LSTM-GRU-derived state representation to formulate optimal treatment policies for vasopressor administration in stabilizing patient physiological states in critical care settings. Using an ICU dataset and the Medical Information Mart for Intensive Care (MIMIC-III) dataset, we focus on patients with Acute Respiratory Distress Syndrome (ARDS) that has led to Sepsis, to derive optimal policies that can prioritize patient recovery over patient survival. Both the DDQN ( RepDRL-DDQN ) and Dueling DDQN ( RepDRL-DDDQN ) versions of the DRL model surpass the baseline performance, with the proposed model’s learning agent achieving an optimal learning process across our performance measuring schemes. The robust state representation served as the foundation for enhancing the model’s performance, ultimately providing an optimal treatment policy focused on rapid patient recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
QQ完成签到,获得积分10
刚刚
上官若男应助亓大大采纳,获得10
1秒前
dd完成签到 ,获得积分10
1秒前
1秒前
庸俗完成签到,获得积分20
2秒前
2秒前
黄晓梅给黄晓梅的求助进行了留言
2秒前
隐形曼青应助gbr0519采纳,获得10
3秒前
风中尔蝶关注了科研通微信公众号
3秒前
小二郎应助tz采纳,获得10
3秒前
梨子发布了新的文献求助10
3秒前
1134695021完成签到,获得积分10
4秒前
4秒前
轻松完成签到,获得积分10
4秒前
赘婿应助春儿采纳,获得10
4秒前
闾丘惜萱完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助小黄采纳,获得10
5秒前
申左一发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
斜玉发布了新的文献求助10
6秒前
zcs完成签到,获得积分10
6秒前
大模型应助吴剑宇采纳,获得10
7秒前
7秒前
小蘑菇应助随便吧采纳,获得10
8秒前
trust发布了新的文献求助10
8秒前
10秒前
11秒前
李哈哈发布了新的文献求助10
11秒前
科研通AI5应助cary采纳,获得10
11秒前
11秒前
威武雪兰完成签到,获得积分10
11秒前
12秒前
aktuell完成签到,获得积分10
12秒前
昵称完成签到,获得积分10
13秒前
077发布了新的文献求助10
14秒前
14秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482