An Aptamer‐Based Nanoflow Cytometry Method for the Molecular Detection and Classification of Ovarian Cancers through Profiling of Tumor Markers on Small Extracellular Vesicles

卵巢癌 细胞外小泡 生物 适体 卵巢肿瘤 分子生物学 计算生物学 癌症研究 癌症 细胞生物学 遗传学
作者
Jin Li,Yingying Li,Qin Li,Lu Sun,Qingqing Tan,Liyan Zheng,Ye Lu,Jianqing Zhu,Fengli Qu,Weihong Tan
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (4) 被引量:15
标识
DOI:10.1002/anie.202314262
摘要

Abstract Molecular profiling of protein markers on small extracellular vesicles (sEVs) is a promising strategy for the precise detection and classification of ovarian cancers. However, this strategy is challenging owing to the lack of simple and practical detection methods. In this work, using an aptamer‐based nanoflow cytometry (nFCM) detection strategy, a simple and rapid method for the molecular profiling of multiple protein markers on sEVs was developed. The protein markers can be easily labeled with aptamer probes and then rapidly profiled by nFCM. Seven cancer‐associated protein markers, including CA125, STIP1, CD24, EpCAM, EGFR, MUC1, and HER2, on plasma sEVs were profiled for the molecular detection and classification of ovarian cancers. Profiling these seven protein markers enabled the precise detection of ovarian cancer with a high accuracy of 94.2 %. In addition, combined with machine learning algorithms, such as linear discriminant analysis (LDA) and random forest (RF), the molecular classifications of ovarian cancer cell lines and subtypes were achieved with overall accuracies of 82.9 % and 55.4 %, respectively. Therefore, this simple, rapid, and non‐invasive method exhibited considerable potential for the auxiliary diagnosis and molecular classification of ovarian cancers in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gujianhua发布了新的文献求助10
1秒前
2秒前
高挑的果汁完成签到 ,获得积分10
3秒前
3秒前
谢谢李完成签到 ,获得积分10
3秒前
苏苏发布了新的文献求助30
4秒前
wade2016发布了新的文献求助10
4秒前
4秒前
5秒前
撑撑的烤红薯完成签到 ,获得积分10
6秒前
深情安青应助练习者采纳,获得10
6秒前
可爱的函函应助automan采纳,获得10
6秒前
烟花应助Windycityguy采纳,获得10
6秒前
hua发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
aliao完成签到,获得积分10
8秒前
9秒前
ccmocker完成签到,获得积分10
9秒前
9秒前
11秒前
Zed发布了新的文献求助80
11秒前
xixi完成签到,获得积分10
11秒前
SciGPT应助katrinagui采纳,获得30
12秒前
12秒前
空古悠浪完成签到,获得积分10
13秒前
Pengcheng发布了新的文献求助10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
gjg发布了新的文献求助10
16秒前
乐乐应助彩色的无血采纳,获得10
16秒前
17秒前
lyn发布了新的文献求助10
18秒前
18秒前
19秒前
领导范儿应助明亮的卿采纳,获得30
20秒前
练习者发布了新的文献求助10
20秒前
automan发布了新的文献求助10
21秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664331
求助须知:如何正确求助?哪些是违规求助? 3224444
关于积分的说明 9757422
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012