Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes

医学 寻常性间质性肺炎 危险系数 置信区间 接收机工作特性 特发性肺纤维化 比例危险模型 队列 放射科 内科学
作者
Stephen M. Humphries,D. Thieke,David Baraghoshi,Matthew Strand,Jeffrey J. Swigris,Kum Ju Chae,Hye Jeon Hwang,Andrea Oh,Kevin R. Flaherty,Ayodeji Adegunsoye,Renea Jablonski,Cathryn T. Lee,Aliya N. Husain,Jonathan H. Chung,Mary E. Strek,David A. Lynch
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:209 (9): 1121-1131 被引量:8
标识
DOI:10.1164/rccm.202307-1191oc
摘要

Rationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained a MIL algorithm using a pooled dataset (n=2,143) and tested it in three independent populations: data from a prior publication (n=127), a single-institution clinical cohort (n=239), and a national registry of patients with pulmonary fibrosis (n=979). We tested UIP classification performance using receiver operating characteristic (ROC) analysis with histologic UIP as ground truth. Cox proportional hazards and linear mixed effects models were used to examine associations between MIL predictions and survival or longitudinal forced vital capacity (FVC). Measurements and Main Results: In two cohorts with biopsy data, MIL improved accuracy for histologic UIP (area under the curve [AUC] 0.77 [n=127] and 0.79 [n=239]) compared to visual assessment (AUC 0.65 and 0.71). In cohorts with survival data, MIL UIP classifications were significant for mortality ([n=239, mortality to April 2021] unadjusted hazard ratio 3.1 95% confidence interval [CI] [1.96, 4.91] p<0.001, and [n=979, mortality to July 2022] 3.64 95% CI [2.66, 4.97] p<0.001). Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/year versus -45 ml/year, n=979 p<0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BigBadWolf发布了新的文献求助10
刚刚
Zhou发布了新的文献求助10
1秒前
wxy完成签到,获得积分10
2秒前
2秒前
3秒前
某某发布了新的文献求助10
4秒前
5秒前
小马甲应助S8采纳,获得10
6秒前
ding应助嘻嘻采纳,获得10
7秒前
7秒前
CipherSage应助麦尔哈巴采纳,获得10
7秒前
一介尘埃完成签到 ,获得积分10
8秒前
某某完成签到,获得积分10
10秒前
gmj完成签到,获得积分10
11秒前
chen完成签到 ,获得积分10
11秒前
11秒前
wanci应助hxpxp采纳,获得10
11秒前
lai发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
bkagyin应助漂亮幻莲采纳,获得10
13秒前
13秒前
13秒前
14秒前
14秒前
温婉的惜文完成签到 ,获得积分10
14秒前
孙大圣应助生动的问旋采纳,获得10
16秒前
陈乐宁2024发布了新的文献求助10
16秒前
17秒前
Cornelius发布了新的文献求助30
17秒前
17秒前
17秒前
万能图书馆应助本之上课采纳,获得10
17秒前
眼睛大的初翠完成签到,获得积分10
17秒前
柚子发布了新的文献求助10
18秒前
彦希完成签到 ,获得积分10
18秒前
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847