Deep Learning Classification of Usual Interstitial Pneumonia Predicts Outcomes

医学 寻常性间质性肺炎 危险系数 置信区间 接收机工作特性 特发性肺纤维化 比例危险模型 队列 放射科 内科学
作者
Stephen M. Humphries,D. Thieke,David Baraghoshi,Matthew Strand,Jeffrey J. Swigris,Kum Ju Chae,Hye Jeon Hwang,Andrea Oh,Kevin R. Flaherty,Ayodeji Adegunsoye,Renea Jablonski,Cathryn T. Lee,Aliya N. Husain,Jonathan H. Chung,Mary E. Strek,David A. Lynch
出处
期刊:American Journal of Respiratory and Critical Care Medicine [American Thoracic Society]
卷期号:209 (9): 1121-1131 被引量:14
标识
DOI:10.1164/rccm.202307-1191oc
摘要

Rationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained a MIL algorithm using a pooled dataset (n=2,143) and tested it in three independent populations: data from a prior publication (n=127), a single-institution clinical cohort (n=239), and a national registry of patients with pulmonary fibrosis (n=979). We tested UIP classification performance using receiver operating characteristic (ROC) analysis with histologic UIP as ground truth. Cox proportional hazards and linear mixed effects models were used to examine associations between MIL predictions and survival or longitudinal forced vital capacity (FVC). Measurements and Main Results: In two cohorts with biopsy data, MIL improved accuracy for histologic UIP (area under the curve [AUC] 0.77 [n=127] and 0.79 [n=239]) compared to visual assessment (AUC 0.65 and 0.71). In cohorts with survival data, MIL UIP classifications were significant for mortality ([n=239, mortality to April 2021] unadjusted hazard ratio 3.1 95% confidence interval [CI] [1.96, 4.91] p<0.001, and [n=979, mortality to July 2022] 3.64 95% CI [2.66, 4.97] p<0.001). Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/year versus -45 ml/year, n=979 p<0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eternitymaria发布了新的文献求助10
刚刚
木笔朱瑾完成签到 ,获得积分10
刚刚
心中的日月完成签到,获得积分10
2秒前
2秒前
无心的钢铁侠完成签到,获得积分10
2秒前
小马甲应助fengjoy采纳,获得10
2秒前
2秒前
pluto应助科研通管家采纳,获得10
2秒前
舒心夜蕾完成签到,获得积分10
3秒前
3秒前
生动路人应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
dominate发布了新的文献求助10
3秒前
wpeng326完成签到,获得积分20
3秒前
魔法以琳完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
简单发布了新的文献求助10
6秒前
soso完成签到,获得积分10
7秒前
Ava应助七页禾采纳,获得10
8秒前
9秒前
顺利毕业发布了新的文献求助10
9秒前
爆米花应助junzpeng采纳,获得10
11秒前
共享精神应助龚幻梦采纳,获得10
13秒前
15秒前
helpmepaper完成签到,获得积分0
15秒前
冰美式关注了科研通微信公众号
16秒前
isle关注了科研通微信公众号
18秒前
19秒前
姽婳wy发布了新的文献求助10
19秒前
20秒前
wangqiuyun发布了新的文献求助10
24秒前
keyanli完成签到,获得积分10
24秒前
25秒前
Sun发布了新的文献求助10
26秒前
26秒前
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010813
求助须知:如何正确求助?哪些是违规求助? 3550492
关于积分的说明 11305855
捐赠科研通 3284855
什么是DOI,文献DOI怎么找? 1810889
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811505