The dynamics of statistical learning in visual search and its interaction with salience processing: an EEG study

显著性(神经科学) N2pc 突出 视觉处理 脑电图 心理学 认知心理学 视觉搜索 视觉空间注意 选择性注意 选择(遗传算法) 视觉注意 人工智能 计算机科学 模式识别(心理学) 感知 神经科学 认知
作者
Carola Dolci,Einat Rashal,Elisa Santandrea,Suliann Ben Hamed,Leonardo Chelazzi,Emiliano Macaluso,C. Nico Boehler
出处
期刊:NeuroImage [Elsevier]
卷期号:: 120514-120514
标识
DOI:10.1016/j.neuroimage.2024.120514
摘要

Visual attention can be guided by statistical regularities in the environment, that people implicitly learn from past experiences (statistical learning, SL). Moreover, a perceptually salient element can automatically capture attention, gaining processing priority through a bottom-up attentional control mechanism. The aim of our study was to investigate the dynamics of SL and if it shapes attentional target selection additively with salience processing, or whether these mechanisms interact, e.g. one gates the other. In a visual search task, we therefore manipulated target frequency (high vs. low) across locations while, in some trials, the target was salient in terms of colour. Additionally, halfway through the experiment, the high-frequency location changed to the opposite hemifield. EEG activity was simultaneously recorded, with a specific interest in two markers related to target selection and post-selection processing, respectively: N2pc and SPCN. Our results revealed that both SL and saliency significantly enhanced behavioural performance, but also interacted with each other, with an attenuated saliency effect at the high-frequency target location, and a smaller SL effect for salient targets. Concerning processing dynamics, the benefit of salience processing was more evident during the early stage of target selection and processing, as indexed by a larger N2pc and early-SPCN, whereas SL modulated the underlying neural activity particularly later on, as revealed by larger late-SPCN. Furthermore, we showed that SL was rapidly acquired and adjusted when the spatial imbalance changed. Overall, our findings suggest that SL is flexible to changes and, combined with salience processing, jointly contributes to establishing attentional priority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Michael发布了新的文献求助10
刚刚
科目三应助滚去学习采纳,获得10
刚刚
炙热的便当完成签到,获得积分20
1秒前
2秒前
共享精神应助shawn采纳,获得10
2秒前
科目三应助天Q采纳,获得10
2秒前
kakaC发布了新的文献求助20
2秒前
科研通AI2S应助迢迢万里采纳,获得10
3秒前
3秒前
4秒前
JamesPei应助GCD采纳,获得10
5秒前
6秒前
orixero应助伈X采纳,获得10
6秒前
qiuling完成签到,获得积分10
6秒前
领导范儿应助大气早晨采纳,获得10
6秒前
7秒前
8秒前
王小红完成签到,获得积分10
8秒前
南枝瑾发布了新的文献求助10
8秒前
8秒前
8秒前
思源应助乐乐采纳,获得10
8秒前
LLLLLL完成签到,获得积分20
9秒前
酷酷映冬完成签到 ,获得积分10
10秒前
nj完成签到,获得积分10
10秒前
11秒前
谢志超发布了新的文献求助10
11秒前
11秒前
爆米花应助zhoujin采纳,获得10
12秒前
自然紫山发布了新的文献求助20
13秒前
13秒前
CipherSage应助唠叨的可燕采纳,获得10
14秒前
柒柒完成签到,获得积分0
14秒前
15秒前
15秒前
Accepted发布了新的文献求助10
16秒前
16秒前
CodeCraft应助nj采纳,获得10
16秒前
依霏发布了新的文献求助10
17秒前
脑洞疼应助小熊软糖采纳,获得10
17秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919