亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Designing an Implementable Clinical Prediction Model for Near-Term Mortality and Long-Term Survival in Patients on Maintenance Hemodialysis

医学 血液透析 期限(时间) 生存分析 重症监护医学 内科学 量子力学 物理
作者
Benjamin A. Goldstein,Chun Xu,Jonathan Wilson,Ricardo Henao,Patti L. Ephraim,Daniel E. Weiner,Tariq Shafi,Julia J. Scialla
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:84 (1): 73-82 被引量:5
标识
DOI:10.1053/j.ajkd.2023.12.013
摘要

Abstract

Rationale & Objective

Life expectancy of patients treated with maintenance hemodialysis (MHD) is heterogeneous. Knowledge of life-expectancy may focus care decisions on near-term vs. long-term goals. Current tools are limited and focus on near-term mortality. Here, we develop and assess potential utility for predicting near-term mortality and long-term survival on MHD.

Study Design

Predictive modelling study.

Setting & Participants

42,351 patients contributing 997,381 patient months over 11 years, abstracted from the EHR system of mid-size, non-profit dialysis providers.

New Predictors & Established Predictors

Demographics, laboratory results, vital signs, and service utilization data available within dialysis EHR.

Outcomes

For each patient month, we ascertained death within the next 6-months (i.e., near-term mortality) and survival over more than 5-years during receipt of MHD or following kidney transplantation (i.e., long-term survival).

Analytical Approach

We used LASSO logistic regression and gradient-boosting machines to predict each outcome. We compared these to time-to-event models spanning both time horizons. We explored the performance of decision rules at different cut-points.

Results

All models achieved AUROC ≥ 0.80 and optimal calibration metrics in the test set. Long-term survival models had significantly better performance than near-term mortality models. Time-to-event models performed similarly to binary models. Applying different cutpoints spanning from the 1st to 90th percentile of the predictions, a positive predictive value (PPV) of 54% could be achieved for near-term mortality, but with poor sensitivity of 6%. A PPV of 71% could be achieved for long-term survival with a sensitivity of 67%.

Limitations

The retrospective models would need to be prospectively validated before they could be appropriately used as clinical decision aids.

Conclusions

A model built with readily available clinical variables to support easy implementation, can predict clinically important life expectancy thresholds and shows promise as a clinical decision support tool for patients on MHD. Predicting long-term survival has better decision rule performance than predicting near-term mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷卷发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
yang完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
18秒前
卷卷完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
39秒前
ukz37752应助科研通管家采纳,获得10
43秒前
MchemG应助科研通管家采纳,获得10
43秒前
量子星尘发布了新的文献求助10
58秒前
WTT完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
自强不息完成签到 ,获得积分10
1分钟前
1分钟前
内向老师完成签到,获得积分10
1分钟前
widesky777完成签到 ,获得积分10
1分钟前
内向老师发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
坚强白凝发布了新的文献求助10
2分钟前
CipherSage应助坚强白凝采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188