Conditional monitoring and fault detection of wind turbines based on Kolmogorov–Smirnov non-parametric test

参数统计 风力发电 科尔莫戈洛夫-斯米尔诺夫试验 故障检测与隔离 断层(地质) 考试(生物学) 海洋工程 可靠性工程 计算机科学 工程类 统计 数学 人工智能 统计假设检验 地质学 电气工程 地震学 古生物学 执行机构
作者
Olayinka S. Ohunakin,Emerald U. Henry,Olaniran J. Matthew,Victor U. Ezekiel,Damola S. Adelekan,Ayodele T. Oyeniran
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 2577-2591 被引量:19
标识
DOI:10.1016/j.egyr.2024.01.081
摘要

This research presents a new method for conditional monitoring based on the wind turbine power curve. The Kolmogorov-Smirnov (K-S) distribution test is employed in the assessment of turbine data and the detection of abnormality (faults) in wind turbines. The process begins with anomaly detection and filtration of faulty SCADA data by a quantile-based filtration approach. Suitable data comprising wind speed, air density, ambient temperature, and pitch angle are utilized in the development of wind turbine power curve models that represents actualities within wind farms. The radial basis function (RBF), multi-layer Perceptron (MLP), and gradient boosting (GBR) methods utilized for model development are compared for predictive accuracy using Mariano-Preve test. The null hypothesis assumes equal predictive ability (EPA); if rejected, an algorithm compares the coefficients of correlation of the models and selects the closest to one (unity). The most accurate model is utilized for the creation of a bin-wise distribution from past data, and bin-wise confidence levels from the plot of wind speed and output power. Cochran's method was utilized to validate the minimum sample size that will possess a sampling distribution similar to that of the population, and a fault is detected if there is a reasonable difference between the sample distribution and population distribution. The K-S test, having a null hypothesis of equivalent distributions, signals a fault if the null hypothesis is rejected. Two wind turbine SCADA datasets associated with two fault events are used for the assessment of our method. The results indicate that our method effectively discovers abnormalities in power output relating to increased bearing temperature and reduced generator rpm, thereby aiding in the detection of faults long before they occur.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zing完成签到,获得积分10
1秒前
iwonder发布了新的文献求助10
1秒前
贺贺完成签到,获得积分10
1秒前
1秒前
HOAN应助even采纳,获得30
1秒前
1秒前
学术黄金完成签到,获得积分10
2秒前
2秒前
JamesPei应助橘子小狗采纳,获得10
2秒前
2秒前
wang发布了新的文献求助10
3秒前
3秒前
wanci应助小冰采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
大个应助bling采纳,获得10
4秒前
雨且青发布了新的文献求助10
4秒前
wwk发布了新的文献求助10
4秒前
星苒完成签到,获得积分20
5秒前
Merciful完成签到 ,获得积分10
5秒前
洪艳完成签到,获得积分10
6秒前
身柏关注了科研通微信公众号
6秒前
7秒前
7秒前
研友_VZG7GZ应助橙子采纳,获得10
7秒前
yy发布了新的文献求助10
7秒前
7秒前
轻松囧发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
Akim应助何小芳采纳,获得10
9秒前
星苒发布了新的文献求助10
9秒前
炙热百川发布了新的文献求助10
10秒前
无敌咖啡豆完成签到,获得积分10
10秒前
10秒前
萍苹平完成签到,获得积分10
10秒前
英俊的铭应助rqtq2采纳,获得10
10秒前
John完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719050
求助须知:如何正确求助?哪些是违规求助? 5254852
关于积分的说明 15287660
捐赠科研通 4869006
什么是DOI,文献DOI怎么找? 2614559
邀请新用户注册赠送积分活动 1564435
关于科研通互助平台的介绍 1521807