Conditional monitoring and fault detection of wind turbines based on Kolmogorov–Smirnov non-parametric test

参数统计 风力发电 科尔莫戈洛夫-斯米尔诺夫试验 故障检测与隔离 断层(地质) 考试(生物学) 海洋工程 可靠性工程 计算机科学 工程类 统计 数学 人工智能 统计假设检验 地质学 电气工程 地震学 古生物学 执行机构
作者
Olayinka S. Ohunakin,Emerald U. Henry,Olaniran J. Matthew,Victor U. Ezekiel,Damola S. Adelekan,Ayodele T. Oyeniran
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 2577-2591 被引量:4
标识
DOI:10.1016/j.egyr.2024.01.081
摘要

This research presents a new method for conditional monitoring based on the wind turbine power curve. The Kolmogorov-Smirnov (K-S) distribution test is employed in the assessment of turbine data and the detection of abnormality (faults) in wind turbines. The process begins with anomaly detection and filtration of faulty SCADA data by a quantile-based filtration approach. Suitable data comprising wind speed, air density, ambient temperature, and pitch angle are utilized in the development of wind turbine power curve models that represents actualities within wind farms. The radial basis function (RBF), multi-layer Perceptron (MLP), and gradient boosting (GBR) methods utilized for model development are compared for predictive accuracy using Mariano-Preve test. The null hypothesis assumes equal predictive ability (EPA); if rejected, an algorithm compares the coefficients of correlation of the models and selects the closest to one (unity). The most accurate model is utilized for the creation of a bin-wise distribution from past data, and bin-wise confidence levels from the plot of wind speed and output power. Cochran's method was utilized to validate the minimum sample size that will possess a sampling distribution similar to that of the population, and a fault is detected if there is a reasonable difference between the sample distribution and population distribution. The K-S test, having a null hypothesis of equivalent distributions, signals a fault if the null hypothesis is rejected. Two wind turbine SCADA datasets associated with two fault events are used for the assessment of our method. The results indicate that our method effectively discovers abnormalities in power output relating to increased bearing temperature and reduced generator rpm, thereby aiding in the detection of faults long before they occur.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
十字入口发布了新的文献求助10
刚刚
支雨泽发布了新的文献求助10
刚刚
无辜的夏兰完成签到,获得积分10
1秒前
维C完成签到 ,获得积分10
2秒前
万能图书馆应助HJJHJH采纳,获得10
3秒前
4秒前
5秒前
5秒前
水123发布了新的文献求助10
5秒前
6秒前
鱼儿游完成签到 ,获得积分10
7秒前
7秒前
零度蓝莓完成签到,获得积分10
8秒前
苏苏完成签到 ,获得积分10
8秒前
大方的飞风完成签到 ,获得积分10
8秒前
dsm完成签到 ,获得积分10
9秒前
shanshan完成签到,获得积分10
10秒前
小胖墩完成签到,获得积分10
11秒前
JJ发布了新的文献求助10
12秒前
芜湖完成签到,获得积分10
13秒前
yifan92完成签到,获得积分10
15秒前
潇洒依白完成签到,获得积分10
15秒前
在水一方应助支雨泽采纳,获得10
16秒前
蒸馏水应助科研通管家采纳,获得10
16秒前
wwy应助科研通管家采纳,获得10
16秒前
Jacob完成签到,获得积分10
16秒前
核桃应助科研通管家采纳,获得30
16秒前
Ava应助科研通管家采纳,获得10
16秒前
AneyWinter66应助科研通管家采纳,获得10
16秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
邓佳鑫Alan应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
Estrella应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603597
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14854949
捐赠科研通 4694087
什么是DOI,文献DOI怎么找? 2540895
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806