Conditional monitoring and fault detection of wind turbines based on Kolmogorov–Smirnov non-parametric test

参数统计 风力发电 科尔莫戈洛夫-斯米尔诺夫试验 故障检测与隔离 断层(地质) 考试(生物学) 海洋工程 可靠性工程 计算机科学 工程类 统计 数学 人工智能 统计假设检验 地质学 电气工程 地震学 古生物学 执行机构
作者
Olayinka S. Ohunakin,Emerald U. Henry,Olaniran J. Matthew,Victor U. Ezekiel,Damola S. Adelekan,Ayodele T. Oyeniran
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 2577-2591 被引量:19
标识
DOI:10.1016/j.egyr.2024.01.081
摘要

This research presents a new method for conditional monitoring based on the wind turbine power curve. The Kolmogorov-Smirnov (K-S) distribution test is employed in the assessment of turbine data and the detection of abnormality (faults) in wind turbines. The process begins with anomaly detection and filtration of faulty SCADA data by a quantile-based filtration approach. Suitable data comprising wind speed, air density, ambient temperature, and pitch angle are utilized in the development of wind turbine power curve models that represents actualities within wind farms. The radial basis function (RBF), multi-layer Perceptron (MLP), and gradient boosting (GBR) methods utilized for model development are compared for predictive accuracy using Mariano-Preve test. The null hypothesis assumes equal predictive ability (EPA); if rejected, an algorithm compares the coefficients of correlation of the models and selects the closest to one (unity). The most accurate model is utilized for the creation of a bin-wise distribution from past data, and bin-wise confidence levels from the plot of wind speed and output power. Cochran's method was utilized to validate the minimum sample size that will possess a sampling distribution similar to that of the population, and a fault is detected if there is a reasonable difference between the sample distribution and population distribution. The K-S test, having a null hypothesis of equivalent distributions, signals a fault if the null hypothesis is rejected. Two wind turbine SCADA datasets associated with two fault events are used for the assessment of our method. The results indicate that our method effectively discovers abnormalities in power output relating to increased bearing temperature and reduced generator rpm, thereby aiding in the detection of faults long before they occur.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
令狐完成签到,获得积分10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得30
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
1秒前
尘林完成签到,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
蓝天完成签到,获得积分10
1秒前
卧虎完成签到,获得积分10
2秒前
Christie完成签到,获得积分10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775738
求助须知:如何正确求助?哪些是违规求助? 5625743
关于积分的说明 15439619
捐赠科研通 4908043
什么是DOI,文献DOI怎么找? 2641067
邀请新用户注册赠送积分活动 1588822
关于科研通互助平台的介绍 1543705