Conditional monitoring and fault detection of wind turbines based on Kolmogorov–Smirnov non-parametric test

参数统计 风力发电 科尔莫戈洛夫-斯米尔诺夫试验 故障检测与隔离 断层(地质) 考试(生物学) 海洋工程 可靠性工程 计算机科学 工程类 统计 数学 人工智能 统计假设检验 地质学 电气工程 地震学 古生物学 执行机构
作者
Olayinka S. Ohunakin,Emerald U. Henry,Olaniran J. Matthew,Victor U. Ezekiel,Damola S. Adelekan,Ayodele T. Oyeniran
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 2577-2591 被引量:4
标识
DOI:10.1016/j.egyr.2024.01.081
摘要

This research presents a new method for conditional monitoring based on the wind turbine power curve. The Kolmogorov-Smirnov (K-S) distribution test is employed in the assessment of turbine data and the detection of abnormality (faults) in wind turbines. The process begins with anomaly detection and filtration of faulty SCADA data by a quantile-based filtration approach. Suitable data comprising wind speed, air density, ambient temperature, and pitch angle are utilized in the development of wind turbine power curve models that represents actualities within wind farms. The radial basis function (RBF), multi-layer Perceptron (MLP), and gradient boosting (GBR) methods utilized for model development are compared for predictive accuracy using Mariano-Preve test. The null hypothesis assumes equal predictive ability (EPA); if rejected, an algorithm compares the coefficients of correlation of the models and selects the closest to one (unity). The most accurate model is utilized for the creation of a bin-wise distribution from past data, and bin-wise confidence levels from the plot of wind speed and output power. Cochran's method was utilized to validate the minimum sample size that will possess a sampling distribution similar to that of the population, and a fault is detected if there is a reasonable difference between the sample distribution and population distribution. The K-S test, having a null hypothesis of equivalent distributions, signals a fault if the null hypothesis is rejected. Two wind turbine SCADA datasets associated with two fault events are used for the assessment of our method. The results indicate that our method effectively discovers abnormalities in power output relating to increased bearing temperature and reduced generator rpm, thereby aiding in the detection of faults long before they occur.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
tier3完成签到,获得积分10
4秒前
HCLonely应助冷傲的迎南采纳,获得10
4秒前
pluto应助AAA郭哥汽修采纳,获得10
5秒前
cyrong发布了新的文献求助10
5秒前
8秒前
领导范儿应助越幸运采纳,获得10
9秒前
张瀚文完成签到,获得积分10
10秒前
Hello应助xiehexin采纳,获得20
10秒前
lin发布了新的文献求助10
11秒前
道友且慢完成签到,获得积分10
11秒前
12秒前
lily完成签到,获得积分10
12秒前
Hello应助朱瑶君采纳,获得10
12秒前
冷傲山彤发布了新的文献求助10
13秒前
15秒前
田様应助简简单单采纳,获得10
15秒前
lily发布了新的文献求助10
17秒前
瑾瑾完成签到,获得积分10
18秒前
Friday发布了新的文献求助10
18秒前
iFaceDOG关注了科研通微信公众号
19秒前
独特的友琴完成签到 ,获得积分10
20秒前
21秒前
小研发布了新的文献求助10
22秒前
小马完成签到,获得积分10
22秒前
羞涩的念寒完成签到,获得积分20
23秒前
23秒前
爆米花应助xiehexin采纳,获得10
23秒前
冷傲芷雪完成签到 ,获得积分10
24秒前
26秒前
jackwang完成签到,获得积分10
27秒前
贺豪完成签到 ,获得积分10
28秒前
皇额娘她推了熹娘娘完成签到 ,获得积分10
28秒前
脑洞疼应助小研采纳,获得10
28秒前
朱瑶君发布了新的文献求助10
28秒前
ferrycake应助阿伦艾弗森采纳,获得20
29秒前
吴昊发布了新的文献求助10
29秒前
29秒前
orixero应助Bilipear采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283