Conditional monitoring and fault detection of wind turbines based on Kolmogorov–Smirnov non-parametric test

参数统计 风力发电 科尔莫戈洛夫-斯米尔诺夫试验 故障检测与隔离 断层(地质) 考试(生物学) 海洋工程 可靠性工程 计算机科学 工程类 统计 数学 人工智能 统计假设检验 地质学 电气工程 地震学 古生物学 执行机构
作者
Olayinka S. Ohunakin,Emerald U. Henry,Olaniran J. Matthew,Victor U. Ezekiel,Damola S. Adelekan,Ayodele T. Oyeniran
出处
期刊:Energy Reports [Elsevier]
卷期号:11: 2577-2591 被引量:4
标识
DOI:10.1016/j.egyr.2024.01.081
摘要

This research presents a new method for conditional monitoring based on the wind turbine power curve. The Kolmogorov-Smirnov (K-S) distribution test is employed in the assessment of turbine data and the detection of abnormality (faults) in wind turbines. The process begins with anomaly detection and filtration of faulty SCADA data by a quantile-based filtration approach. Suitable data comprising wind speed, air density, ambient temperature, and pitch angle are utilized in the development of wind turbine power curve models that represents actualities within wind farms. The radial basis function (RBF), multi-layer Perceptron (MLP), and gradient boosting (GBR) methods utilized for model development are compared for predictive accuracy using Mariano-Preve test. The null hypothesis assumes equal predictive ability (EPA); if rejected, an algorithm compares the coefficients of correlation of the models and selects the closest to one (unity). The most accurate model is utilized for the creation of a bin-wise distribution from past data, and bin-wise confidence levels from the plot of wind speed and output power. Cochran's method was utilized to validate the minimum sample size that will possess a sampling distribution similar to that of the population, and a fault is detected if there is a reasonable difference between the sample distribution and population distribution. The K-S test, having a null hypothesis of equivalent distributions, signals a fault if the null hypothesis is rejected. Two wind turbine SCADA datasets associated with two fault events are used for the assessment of our method. The results indicate that our method effectively discovers abnormalities in power output relating to increased bearing temperature and reduced generator rpm, thereby aiding in the detection of faults long before they occur.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LUMOS完成签到,获得积分10
刚刚
suki完成签到,获得积分10
刚刚
阿洁发布了新的文献求助10
刚刚
1秒前
Jomain完成签到,获得积分10
1秒前
1秒前
huan发布了新的文献求助10
1秒前
1秒前
小洲冲冲冲完成签到,获得积分10
1秒前
1秒前
AXXXin完成签到,获得积分10
1秒前
2秒前
Ie完成签到,获得积分10
2秒前
贪玩的莫英完成签到,获得积分10
2秒前
琳琳完成签到,获得积分10
2秒前
xiang完成签到,获得积分10
2秒前
Zhy发布了新的文献求助10
2秒前
嘟嘟发布了新的文献求助10
3秒前
3秒前
学术裁缝完成签到,获得积分10
3秒前
土归土发布了新的文献求助10
3秒前
霸天哥哥完成签到,获得积分20
4秒前
学渣发布了新的文献求助10
4秒前
liu完成签到,获得积分10
4秒前
丁晨发布了新的文献求助10
4秒前
橙子完成签到,获得积分10
4秒前
香蕉觅云应助李江涛采纳,获得10
5秒前
abai完成签到,获得积分10
5秒前
ytru完成签到,获得积分10
5秒前
h123发布了新的文献求助10
5秒前
huahuahua完成签到,获得积分10
6秒前
juanjie发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
彭于晏应助青草蛋糕采纳,获得10
6秒前
陈辰发布了新的文献求助10
7秒前
马小梁发布了新的文献求助10
7秒前
Havertz完成签到,获得积分10
8秒前
情怀应助歪歪采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618980
求助须知:如何正确求助?哪些是违规求助? 4703923
关于积分的说明 14924415
捐赠科研通 4758994
什么是DOI,文献DOI怎么找? 2550336
邀请新用户注册赠送积分活动 1513125
关于科研通互助平台的介绍 1474401