亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generative Semi-supervised Graph Anomaly Detection

异常检测 图形 生成语法 计算机科学 人工智能 异常(物理) 模式识别(心理学) 理论计算机科学 物理 凝聚态物理
作者
Hezhe Qiao,Qingsong Wen,Xiaoli Li,Ee‐Peng Lim,Guansong Pang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.11887
摘要

This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the unsupervised setting in most GAD studies with a fully unlabeled graph. As expected, we find that having access to these normal nodes helps enhance the detection performance of existing unsupervised GAD methods when they are adapted to the semi-supervised setting. However, their utilization of these normal nodes is limited. In this paper, we propose a novel Generative GAD approach (GGAD) for the semi-supervised scenario to better exploit the normal nodes. The key idea is to generate outlier nodes that assimilate anomaly nodes in both local structure and node representations for providing effective negative node samples in training a discriminative one-class classifier. There have been many generative anomaly detection approaches, but they are designed for non-graph data, and as a result, they fail to take account of the graph structure information. Our approach tackles this problem by generating graph structure-aware outlier nodes that have asymmetric affinity separability from normal nodes while being enforced to achieve egocentric closeness to normal nodes in the node representation space. Comprehensive experiments on four real-world datasets are performed to establish a benchmark for semi-supervised GAD and show that GGAD substantially outperforms state-of-the-art unsupervised and semi-supervised GAD methods with varying numbers of training normal nodes. Code will be made available at https://github.com/mala-lab/GGAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
ssskong发布了新的文献求助10
7秒前
赵焱峥完成签到,获得积分10
10秒前
ssskong完成签到,获得积分20
13秒前
25秒前
美罗培南完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
归尘应助科研通管家采纳,获得30
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
33秒前
33秒前
34秒前
Lucas应助jinl9587采纳,获得10
35秒前
JKWu完成签到,获得积分10
37秒前
隐形曼青应助可耐的尔白采纳,获得10
38秒前
38秒前
39秒前
juzg发布了新的文献求助10
40秒前
40秒前
41秒前
42秒前
zhongbo发布了新的文献求助10
42秒前
柠檬完成签到,获得积分10
46秒前
alex发布了新的文献求助10
46秒前
KDS发布了新的文献求助10
47秒前
53秒前
justsoso完成签到 ,获得积分10
56秒前
58秒前
朴素的山蝶完成签到 ,获得积分10
59秒前
878787发布了新的文献求助20
1分钟前
完美世界应助巴拉芭芭拉采纳,获得10
1分钟前
小哈完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
juzg完成签到,获得积分10
1分钟前
jinl9587发布了新的文献求助10
1分钟前
zhongbo发布了新的文献求助10
1分钟前
1分钟前
Wang完成签到 ,获得积分10
1分钟前
aldehyde完成签到,获得积分0
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390757
捐赠科研通 2831039
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803