Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics

脂类学 代谢组学 疾病 医学诊断 诊断生物标志物 帕金森病 医学 计算生物学 内科学 生物信息学 生物 诊断准确性 病理
作者
Xiaoxiao Wang,Bolun Wang,Fenfen Ji,Jie Yan,Jiacheng Fang,Doudou Zhang,Ji Xu,Jing Ji,Xinran Hao,Hemi Luan,Yanjun Hong,Shulan Qiu,Min Li,Zhu Yang,Wenlan Liu,Xiaodong Cai,Zongwei Cai
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:: 109653-109653
标识
DOI:10.1016/j.cclet.2024.109653
摘要

Parkinson's disease (PD) is an aging-associated neurodegenerative movement disorder with increasing morbidity and mortality rates. The current gold standard for diagnosing PD is clinical evaluation, which is often challenging and inaccurate. Metabolomics and lipidomics approaches have been extensively applied because of their potential in discovering valuable biomarkers for medical diagnostics. Here, we used comprehensive untargeted metabolomics and lipidomics methodology based on liquid chromatography-mass spectrometry to evaluate metabolic abnormalities linked with PD. Two well-characterized cohorts of 288 plasma samples (143 PD and 145 control subjects in total) were used to examine metabolic alterations and identify diagnostic biomarkers. Unbiased multivariate and univariate studies were combined to identify the promising metabolic signatures, based on which the discriminant models for PD were established by integrating multiple machine learning algorithms. A 6-biomarker predictive model was constructed based on the omics profile in the discovery cohort, and the discriminant performance of the biomarker panel was evaluated with an accuracy over 81.6% both in the discovery cohort and validation cohort. The results indicated that PC (40:7), eicosatrienoic acid were negatively correlated with severity of PD, and pentalenic acid, PC (40:6p) and aspartic acid were positively correlated with severity of PD. In summary, we developed a multi-metabolite predictive model which can diagnose PD with over 81.6% accuracy based on this unique metabolic signature. Future clinical diagnosis of PD may benefit from the biomarker panel reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研鲁宾孙采纳,获得10
刚刚
周小花完成签到,获得积分10
2秒前
one完成签到 ,获得积分10
2秒前
zyy_cwdl发布了新的文献求助10
2秒前
因几完成签到 ,获得积分10
3秒前
健壮的尔烟完成签到,获得积分10
3秒前
4秒前
kiki完成签到,获得积分20
5秒前
科研通AI2S应助coconut采纳,获得10
6秒前
丘比特应助剩饭的狗采纳,获得10
6秒前
南孚电蛤蟆完成签到,获得积分10
6秒前
xsc发布了新的文献求助10
7秒前
小蘑菇应助hhhhhhh采纳,获得30
9秒前
上官若男应助豪哥大大采纳,获得10
10秒前
10秒前
可乐完成签到,获得积分10
10秒前
星辰大海应助zyy_cwdl采纳,获得10
11秒前
11秒前
mingliang发布了新的文献求助50
13秒前
SYX完成签到,获得积分20
13秒前
如意怀柔发布了新的文献求助30
14秒前
默默若剑完成签到,获得积分20
15秒前
小不点发布了新的文献求助10
15秒前
15秒前
宜醉宜游宜睡应助yagami采纳,获得10
17秒前
爱的魔力转圈圈完成签到,获得积分10
17秒前
zzt完成签到 ,获得积分10
18秒前
kaww发布了新的文献求助10
18秒前
20秒前
迢迢笙箫应助ZJ采纳,获得60
21秒前
CR7完成签到,获得积分10
21秒前
所所应助LAN0528采纳,获得10
21秒前
小不点完成签到,获得积分20
22秒前
22秒前
深情安青应助SYX采纳,获得10
22秒前
苏书白应助Yeah_椰椰采纳,获得10
23秒前
ORANGE完成签到,获得积分10
24秒前
小小林柒染完成签到,获得积分20
24秒前
汉堡包应助kaww采纳,获得10
25秒前
程大海发布了新的文献求助10
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721