Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics

脂类学 代谢组学 生物标志物发现 生物标志物 疾病 队列 代谢组 单变量 多元分析 诊断生物标志物 多元统计 医学 肿瘤科 计算生物学 内科学 蛋白质组学 生物信息学 生物 诊断准确性 化学 机器学习 计算机科学 生物化学 基因
作者
Xiaoxiao Wang,Bolun Wang,Fenfen Ji,Jie Yan,Jiacheng Fang,Doudou Zhang,Ji Xu,Jing Ji,Xinran Hao,Hemi Luan,Yanjun Hong,Shulan Qiu,Min Li,Zhu Yang,Wenlan Liu,Xiaodong Cai,Zongwei Cai
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:35 (11): 109653-109653
标识
DOI:10.1016/j.cclet.2024.109653
摘要

Parkinson's disease (PD) is an aging-associated neurodegenerative movement disorder with increasing morbidity and mortality rates. The current gold standard for diagnosing PD is clinical evaluation, which is often challenging and inaccurate. Metabolomics and lipidomics approaches have been extensively applied because of their potential in discovering valuable biomarkers for medical diagnostics. Here, we used comprehensive untargeted metabolomics and lipidomics methodology based on liquid chromatography-mass spectrometry to evaluate metabolic abnormalities linked with PD. Two well-characterized cohorts of 288 plasma samples (143 PD and 145 control subjects in total) were used to examine metabolic alterations and identify diagnostic biomarkers. Unbiased multivariate and univariate studies were combined to identify the promising metabolic signatures, based on which the discriminant models for PD were established by integrating multiple machine learning algorithms. A 6-biomarker predictive model was constructed based on the omics profile in the discovery cohort, and the discriminant performance of the biomarker panel was evaluated with an accuracy over 81.6% both in the discovery cohort and validation cohort. The results indicated that PC (40:7), eicosatrienoic acid were negatively correlated with severity of PD, and pentalenic acid, PC (40:6p) and aspartic acid were positively correlated with severity of PD. In summary, we developed a multi-metabolite predictive model which can diagnose PD with over 81.6% accuracy based on this unique metabolic signature. Future clinical diagnosis of PD may benefit from the biomarker panel reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碱性沉默完成签到,获得积分10
刚刚
晓晖完成签到,获得积分10
1秒前
1秒前
www完成签到,获得积分10
1秒前
俏皮的悟空完成签到,获得积分10
2秒前
DTT发布了新的文献求助10
3秒前
jiayueiyang发布了新的文献求助10
3秒前
研友_VZG7GZ应助lynn_zhang采纳,获得10
3秒前
3秒前
4秒前
星辰大海应助公西元柏采纳,获得10
4秒前
orixero应助Yangpc采纳,获得10
4秒前
5秒前
5秒前
5秒前
小猴同学完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
6秒前
AaronW发布了新的文献求助10
6秒前
奋斗的夏柳完成签到 ,获得积分10
7秒前
小猫咪发布了新的文献求助200
7秒前
sunyexuan发布了新的文献求助10
7秒前
鲸鱼姐姐完成签到 ,获得积分10
8秒前
8秒前
alho完成签到 ,获得积分10
8秒前
仄兀发布了新的文献求助10
8秒前
8秒前
Rrrr完成签到,获得积分10
9秒前
9秒前
Tan完成签到 ,获得积分10
9秒前
晚风完成签到,获得积分20
10秒前
10秒前
情怀应助平淡的蜻蜓采纳,获得10
10秒前
复杂觅海完成签到 ,获得积分10
10秒前
JUSTs0so发布了新的文献求助10
11秒前
12秒前
12秒前
毛慢慢发布了新的文献求助30
12秒前
123完成签到,获得积分10
12秒前
DTT完成签到,获得积分10
13秒前
SciGPT应助单薄白薇采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762