Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics

脂类学 代谢组学 生物标志物发现 生物标志物 疾病 队列 代谢组 单变量 多元分析 诊断生物标志物 多元统计 医学 肿瘤科 计算生物学 内科学 蛋白质组学 生物信息学 生物 诊断准确性 化学 机器学习 计算机科学 生物化学 基因
作者
Xiaoxiao Wang,Bolun Wang,Fenfen Ji,Jie Yan,Jiacheng Fang,Doudou Zhang,Ji Xu,Jing Ji,Xinran Hao,Hemi Luan,Yanjun Hong,Shulan Qiu,Min Li,Zhu Yang,Wenlan Liu,Xiaodong Cai,Zongwei Cai
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:35 (11): 109653-109653 被引量:1
标识
DOI:10.1016/j.cclet.2024.109653
摘要

Parkinson's disease (PD) is an aging-associated neurodegenerative movement disorder with increasing morbidity and mortality rates. The current gold standard for diagnosing PD is clinical evaluation, which is often challenging and inaccurate. Metabolomics and lipidomics approaches have been extensively applied because of their potential in discovering valuable biomarkers for medical diagnostics. Here, we used comprehensive untargeted metabolomics and lipidomics methodology based on liquid chromatography-mass spectrometry to evaluate metabolic abnormalities linked with PD. Two well-characterized cohorts of 288 plasma samples (143 PD and 145 control subjects in total) were used to examine metabolic alterations and identify diagnostic biomarkers. Unbiased multivariate and univariate studies were combined to identify the promising metabolic signatures, based on which the discriminant models for PD were established by integrating multiple machine learning algorithms. A 6-biomarker predictive model was constructed based on the omics profile in the discovery cohort, and the discriminant performance of the biomarker panel was evaluated with an accuracy over 81.6% both in the discovery cohort and validation cohort. The results indicated that PC (40:7), eicosatrienoic acid were negatively correlated with severity of PD, and pentalenic acid, PC (40:6p) and aspartic acid were positively correlated with severity of PD. In summary, we developed a multi-metabolite predictive model which can diagnose PD with over 81.6% accuracy based on this unique metabolic signature. Future clinical diagnosis of PD may benefit from the biomarker panel reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助如沐风采纳,获得10
刚刚
feifei发布了新的文献求助10
刚刚
充电宝应助迅猛2002采纳,获得10
1秒前
SciGPT应助勤劳的音响采纳,获得10
2秒前
秀丽雁芙发布了新的文献求助10
3秒前
hopen完成签到,获得积分10
3秒前
大盆发布了新的文献求助10
4秒前
4秒前
852应助大方小苏采纳,获得10
4秒前
5秒前
无用的老董西完成签到 ,获得积分10
5秒前
香香发布了新的文献求助10
5秒前
神勇中道完成签到,获得积分10
6秒前
大个应助liuying采纳,获得10
6秒前
6秒前
脑洞疼应助TT2022采纳,获得10
7秒前
英俊的铭应助天天采纳,获得10
7秒前
erhao发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
欢喜烧鹅完成签到,获得积分10
9秒前
111完成签到,获得积分10
9秒前
9秒前
10秒前
爆米花应助GOODYUE采纳,获得10
10秒前
隐形不凡完成签到,获得积分10
10秒前
10秒前
迅猛2002完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
领导范儿应助yefeng采纳,获得10
12秒前
12秒前
Catsing发布了新的文献求助30
12秒前
李健应助AAB采纳,获得10
13秒前
磕学少女发布了新的文献求助10
13秒前
13秒前
66发布了新的文献求助10
14秒前
不想说完成签到,获得积分10
14秒前
Lawrence发布了新的文献求助50
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959120
求助须知:如何正确求助?哪些是违规求助? 4219993
关于积分的说明 13139275
捐赠科研通 4003365
什么是DOI,文献DOI怎么找? 2190793
邀请新用户注册赠送积分活动 1205401
关于科研通互助平台的介绍 1116823