Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics

脂类学 代谢组学 生物标志物发现 生物标志物 疾病 队列 代谢组 单变量 多元分析 诊断生物标志物 多元统计 医学 肿瘤科 计算生物学 内科学 蛋白质组学 生物信息学 生物 诊断准确性 化学 机器学习 计算机科学 生物化学 基因
作者
Xiaoxiao Wang,Bolun Wang,Fenfen Ji,Jie Yan,Jiacheng Fang,Doudou Zhang,Ji Xu,Jing Ji,Xinran Hao,Hemi Luan,Yanjun Hong,Shulan Qiu,Min Li,Zhu Yang,Wenlan Liu,Xiaodong Cai,Zongwei Cai
出处
期刊:Chinese Chemical Letters [Elsevier]
卷期号:35 (11): 109653-109653 被引量:9
标识
DOI:10.1016/j.cclet.2024.109653
摘要

Parkinson's disease (PD) is an aging-associated neurodegenerative movement disorder with increasing morbidity and mortality rates. The current gold standard for diagnosing PD is clinical evaluation, which is often challenging and inaccurate. Metabolomics and lipidomics approaches have been extensively applied because of their potential in discovering valuable biomarkers for medical diagnostics. Here, we used comprehensive untargeted metabolomics and lipidomics methodology based on liquid chromatography-mass spectrometry to evaluate metabolic abnormalities linked with PD. Two well-characterized cohorts of 288 plasma samples (143 PD and 145 control subjects in total) were used to examine metabolic alterations and identify diagnostic biomarkers. Unbiased multivariate and univariate studies were combined to identify the promising metabolic signatures, based on which the discriminant models for PD were established by integrating multiple machine learning algorithms. A 6-biomarker predictive model was constructed based on the omics profile in the discovery cohort, and the discriminant performance of the biomarker panel was evaluated with an accuracy over 81.6% both in the discovery cohort and validation cohort. The results indicated that PC (40:7), eicosatrienoic acid were negatively correlated with severity of PD, and pentalenic acid, PC (40:6p) and aspartic acid were positively correlated with severity of PD. In summary, we developed a multi-metabolite predictive model which can diagnose PD with over 81.6% accuracy based on this unique metabolic signature. Future clinical diagnosis of PD may benefit from the biomarker panel reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liguanyu1078完成签到,获得积分10
刚刚
小包子完成签到,获得积分10
刚刚
五本笔记完成签到 ,获得积分10
刚刚
难过的溪流完成签到 ,获得积分10
1秒前
fawr完成签到 ,获得积分10
1秒前
哎呀完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
涂山白切鸡完成签到,获得积分10
2秒前
ju00发布了新的文献求助10
2秒前
abtitw完成签到,获得积分10
2秒前
zxx发布了新的文献求助10
4秒前
Freddy完成签到 ,获得积分10
4秒前
tulips完成签到 ,获得积分10
4秒前
洁净的天德完成签到,获得积分10
5秒前
Sunsets完成签到 ,获得积分10
5秒前
隔水一路秋完成签到,获得积分10
6秒前
amanda完成签到,获得积分10
7秒前
Cc完成签到 ,获得积分10
7秒前
飞云发布了新的文献求助30
8秒前
刘传宏完成签到,获得积分10
8秒前
dujinjun完成签到,获得积分10
9秒前
zuoyou完成签到,获得积分10
9秒前
9秒前
ww完成签到,获得积分10
9秒前
tomorrow完成签到,获得积分10
10秒前
慕青应助ju00采纳,获得10
10秒前
12秒前
柒tt完成签到,获得积分10
12秒前
haozi完成签到,获得积分10
14秒前
开心的眼睛完成签到,获得积分10
15秒前
甜美的芷完成签到,获得积分20
15秒前
ding应助爱看文献的小朱采纳,获得10
16秒前
yaowenjun完成签到,获得积分10
17秒前
玉米侠完成签到 ,获得积分10
18秒前
DreamRunner0410完成签到,获得积分10
19秒前
Orange应助甜美的芷采纳,获得10
20秒前
龙抬头完成签到,获得积分10
20秒前
亮亮完成签到,获得积分10
20秒前
托托完成签到,获得积分10
21秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584888
求助须知:如何正确求助?哪些是违规求助? 4668769
关于积分的说明 14771947
捐赠科研通 4616207
什么是DOI,文献DOI怎么找? 2530267
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590