Discovery of plasma biomarkers for Parkinson's disease diagnoses based on metabolomics and lipidomics

脂类学 代谢组学 生物标志物发现 生物标志物 疾病 队列 代谢组 单变量 多元分析 诊断生物标志物 多元统计 医学 肿瘤科 计算生物学 内科学 蛋白质组学 生物信息学 生物 诊断准确性 化学 机器学习 计算机科学 生物化学 基因
作者
Xiaoxiao Wang,Bolun Wang,Fenfen Ji,Jie Yan,Jiacheng Fang,Doudou Zhang,Ji Xu,Jing Ji,Xinran Hao,Hemi Luan,Yanjun Hong,Shulan Qiu,Min Li,Zhu Yang,Wenlan Liu,Xiaodong Cai,Zongwei Cai
出处
期刊:Chinese Chemical Letters [Elsevier BV]
卷期号:35 (11): 109653-109653 被引量:1
标识
DOI:10.1016/j.cclet.2024.109653
摘要

Parkinson's disease (PD) is an aging-associated neurodegenerative movement disorder with increasing morbidity and mortality rates. The current gold standard for diagnosing PD is clinical evaluation, which is often challenging and inaccurate. Metabolomics and lipidomics approaches have been extensively applied because of their potential in discovering valuable biomarkers for medical diagnostics. Here, we used comprehensive untargeted metabolomics and lipidomics methodology based on liquid chromatography-mass spectrometry to evaluate metabolic abnormalities linked with PD. Two well-characterized cohorts of 288 plasma samples (143 PD and 145 control subjects in total) were used to examine metabolic alterations and identify diagnostic biomarkers. Unbiased multivariate and univariate studies were combined to identify the promising metabolic signatures, based on which the discriminant models for PD were established by integrating multiple machine learning algorithms. A 6-biomarker predictive model was constructed based on the omics profile in the discovery cohort, and the discriminant performance of the biomarker panel was evaluated with an accuracy over 81.6% both in the discovery cohort and validation cohort. The results indicated that PC (40:7), eicosatrienoic acid were negatively correlated with severity of PD, and pentalenic acid, PC (40:6p) and aspartic acid were positively correlated with severity of PD. In summary, we developed a multi-metabolite predictive model which can diagnose PD with over 81.6% accuracy based on this unique metabolic signature. Future clinical diagnosis of PD may benefit from the biomarker panel reported in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一禅发布了新的文献求助100
1秒前
1秒前
细腻老四完成签到,获得积分20
2秒前
张冕发布了新的文献求助10
7秒前
汉堡包应助Louie~采纳,获得10
8秒前
香蕉觅云应助自由天荷采纳,获得10
8秒前
李健应助解安珊采纳,获得10
11秒前
善学以致用应助积极寻雪采纳,获得10
12秒前
李健的小迷弟应助吗喽采纳,获得10
14秒前
深情安青应助咿呀呀嘿哟采纳,获得10
16秒前
17秒前
18秒前
LOST完成签到 ,获得积分10
20秒前
www完成签到,获得积分10
21秒前
Louie~发布了新的文献求助10
23秒前
解安珊发布了新的文献求助10
23秒前
27秒前
深情安青应助hp571采纳,获得10
28秒前
槿风发布了新的文献求助10
29秒前
30秒前
母yannan123发布了新的文献求助30
31秒前
31秒前
32秒前
咿呀呀嘿哟完成签到 ,获得积分10
33秒前
入门的橙橙完成签到 ,获得积分10
33秒前
思维隋发布了新的文献求助10
33秒前
zero完成签到,获得积分10
34秒前
wizard发布了新的文献求助10
34秒前
34秒前
35秒前
二二发布了新的文献求助30
36秒前
hp571完成签到,获得积分10
37秒前
李爱国应助xc采纳,获得10
37秒前
hp571发布了新的文献求助10
39秒前
A2QD发布了新的文献求助10
40秒前
彭于晏应助ssherry采纳,获得10
41秒前
42秒前
Theprisoners举报包破茧求助涉嫌违规
43秒前
48秒前
48秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999408
求助须知:如何正确求助?哪些是违规求助? 3538753
关于积分的说明 11275049
捐赠科研通 3277597
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810111