Fine Classification of Urban Tree Species Based on UAV-Based RGB Imagery and LiDAR Data

激光雷达 遥感 航空影像 RGB颜色模型 卫星图像 环境科学 树(集合论) 地理 地图学 计算机科学 人工智能 数学 数学分析
作者
Jingru Wu,Qixia Man,Xinming Yang,Pinliang Dong,Xiaotong Ma,Chunhui Liu,Changyin Han
出处
期刊:Forests [MDPI AG]
卷期号:15 (2): 390-390 被引量:1
标识
DOI:10.3390/f15020390
摘要

Rapid and accurate classification of urban tree species is crucial for the protection and management of urban ecology. However, tree species classification remains a great challenge because of the high spatial heterogeneity and biodiversity. Addressing this challenge, in this study, unmanned aerial vehicle (UAV)-based high-resolution RGB imagery and LiDAR data were utilized to extract seven types of features, including RGB spectral features, texture features, vegetation indexes, HSV spectral features, HSV texture features, height feature, and intensity feature. Seven experiments involving different feature combinations were conducted to classify 10 dominant tree species in urban areas with a Random Forest classifier. Additionally, Plurality Filling was applied to further enhance the accuracy of the results as a post-processing method. The aim was to explore the potential of UAV-based RGB imagery and LiDAR data for tree species classification in urban areas, as well as evaluate the effectiveness of the post-processing method. The results indicated that, compared to using RGB imagery alone, the integrated LiDAR and RGB data could improve the overall accuracy and the Kappa coefficient by 18.49% and 0.22, respectively. Notably, among the features based on RGB, the HSV and its texture features contribute most to the improvement of accuracy. The overall accuracy and Kappa coefficient of the optimal feature combination could achieve 73.74% and 0.70 with the Random Forest classifier, respectively. Additionally, the Plurality Filling method could increase the overall accuracy by 11.76%, which could reach 85.5%. The results of this study confirm the effectiveness of RGB imagery and LiDAR data for urban tree species classification. Consequently, these results could provide a valuable reference for the precise classification of tree species using UAV remote sensing data in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Duang完成签到,获得积分10
1秒前
1秒前
Hermione发布了新的文献求助10
2秒前
2秒前
带象完成签到,获得积分10
2秒前
3秒前
张张完成签到,获得积分10
3秒前
沉静的香烟完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
妮妮发布了新的文献求助10
5秒前
英俊的铭应助栗子呢呢呢采纳,获得10
5秒前
哆啦完成签到 ,获得积分10
6秒前
科研通AI5应助小马驹采纳,获得10
7秒前
7秒前
8秒前
杨晓白发布了新的文献求助10
8秒前
9秒前
Parsec发布了新的文献求助10
9秒前
9秒前
曲阁发布了新的文献求助10
10秒前
脑洞疼应助虚幻的断天采纳,获得10
10秒前
斯文败类应助MOMO采纳,获得10
11秒前
科研通AI5应助666采纳,获得30
11秒前
SciGPT应助husaheng采纳,获得10
11秒前
11秒前
所愿所得完成签到,获得积分10
11秒前
小木发布了新的文献求助10
12秒前
12秒前
做梦发布了新的文献求助10
13秒前
MINUS3发布了新的文献求助10
13秒前
Eazin发布了新的文献求助10
14秒前
zoujianqiao发布了新的文献求助20
15秒前
vision0000完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
wsh发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514812
求助须知:如何正确求助?哪些是违规求助? 3097140
关于积分的说明 9234298
捐赠科研通 2792136
什么是DOI,文献DOI怎么找? 1532287
邀请新用户注册赠送积分活动 711947
科研通“疑难数据库(出版商)”最低求助积分说明 707045