触觉传感器
人工智能
计算机视觉
计算机科学
机器人学
可扩展性
机器人
方案(数学)
数学
数据库
数学分析
标识
DOI:10.1109/toh.2024.3371092
摘要
The past decade has witnessed the development of tactile sensors, which have been increasingly considered as an essential equipment in robotics, especially the dexterous manipulation and collaborative human-robot interactions. There are two major types of tactile sensors, i.e., the vision-based and taxel-based sensors. The latter is capable of achieving lower integration complexity with existing robotic systems, but unable to provide high-resolution (HR) tactile information as that of the vision-based counterpart due to the manufacturing limitations. Therefore, we propose a novel tactile pattern super-resolution (SR) scheme for taxel-based sensors, which is a data-driven scheme enabling customized selection on the number of applied "tapping" actions to achieve improvable performance from single tapping SR (STSR) to the multi-tapping SR (MTSR). In addition, we develop a new dataset for the proposed tactile SR scheme. In order to obtain scalable resolutions (e.g. ×4, ×10, ×20, etc.) of ground-truth HR tactile patterns, we propose a novel tactile point spread function (PSF) scheme to generate HR tactile patterns by leveraging the low-resolution (LR) data gathered directly from the taxel-based sensor and the depth information of contact surfaces. This is in strong contrast to the conventional ground-truth generation approach with overlapped multi-sampling and registration strategy, which can only provide a fixed resolution. Experimental results confirm the efficiency of the proposed scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI