Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵咪西西完成签到 ,获得积分10
刚刚
风清扬应助科研通管家采纳,获得10
6秒前
风清扬应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
风清扬应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
shhoing应助科研通管家采纳,获得10
6秒前
绿袖子完成签到,获得积分10
8秒前
郑成灿完成签到 ,获得积分10
8秒前
榴芒兔完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
1233完成签到 ,获得积分10
12秒前
王翔飞完成签到 ,获得积分10
13秒前
cellur发布了新的文献求助10
15秒前
三脸茫然完成签到 ,获得积分0
15秒前
15秒前
坚定如南完成签到 ,获得积分10
15秒前
马铃薯完成签到 ,获得积分10
23秒前
清秀豆芽完成签到,获得积分10
23秒前
曹国庆完成签到 ,获得积分10
24秒前
愉快的丹彤完成签到 ,获得积分10
26秒前
29秒前
追梦发布了新的文献求助10
33秒前
HaojunWang完成签到 ,获得积分10
35秒前
35秒前
Diego完成签到,获得积分10
38秒前
yusovegoistt发布了新的文献求助10
40秒前
昏睡的静丹完成签到,获得积分10
41秒前
热情嘉懿完成签到,获得积分20
41秒前
44秒前
加油完成签到,获得积分10
44秒前
121卡卡完成签到 ,获得积分10
45秒前
手握灵珠常奋笔完成签到,获得积分10
45秒前
yshj完成签到 ,获得积分0
47秒前
量子星尘发布了新的文献求助10
47秒前
快乐的鱼完成签到,获得积分10
48秒前
ADcal完成签到 ,获得积分10
49秒前
peng完成签到 ,获得积分10
52秒前
123完成签到 ,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539188
求助须知:如何正确求助?哪些是违规求助? 4625972
关于积分的说明 14597205
捐赠科研通 4566798
什么是DOI,文献DOI怎么找? 2503620
邀请新用户注册赠送积分活动 1481554
关于科研通互助平台的介绍 1453069