亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助yangderder采纳,获得10
20秒前
琉璃发布了新的文献求助10
23秒前
26秒前
yangderder发布了新的文献求助10
31秒前
48秒前
48秒前
RR发布了新的文献求助10
54秒前
1分钟前
1分钟前
小艺发布了新的文献求助10
1分钟前
qzxwsa发布了新的文献求助10
1分钟前
科研通AI5应助小艺采纳,获得10
1分钟前
1分钟前
英俊的铭应助qzxwsa采纳,获得10
1分钟前
瘦瘦山菡完成签到,获得积分10
1分钟前
Zoom应助科研通管家采纳,获得20
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
Ecokarster完成签到,获得积分10
2分钟前
BLUE发布了新的文献求助30
2分钟前
2分钟前
一一驳回了Li应助
2分钟前
田様应助yizhizmd采纳,获得10
2分钟前
xj完成签到,获得积分10
2分钟前
Susieeeeee完成签到,获得积分20
2分钟前
2分钟前
2分钟前
YuequnMa完成签到,获得积分10
3分钟前
又又发布了新的文献求助10
3分钟前
3分钟前
799完成签到 ,获得积分10
3分钟前
思源应助高小航采纳,获得10
3分钟前
3分钟前
小姑不在完成签到,获得积分10
3分钟前
flyinthesky完成签到,获得积分10
3分钟前
王博涵发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957927
求助须知:如何正确求助?哪些是违规求助? 4219129
关于积分的说明 13133148
捐赠科研通 4002210
什么是DOI,文献DOI怎么找? 2190237
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116613