Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winwin完成签到,获得积分10
刚刚
结实盼烟完成签到,获得积分10
1秒前
sunchengcehng发布了新的文献求助30
2秒前
Alinf完成签到,获得积分10
2秒前
2秒前
Alan完成签到,获得积分10
2秒前
3秒前
3秒前
Ava应助丰那个丰采纳,获得10
4秒前
田様应助停婷采纳,获得10
5秒前
5秒前
时尚的大碗完成签到,获得积分10
5秒前
rmhayze完成签到,获得积分10
5秒前
6秒前
EASA完成签到,获得积分10
6秒前
萤阳完成签到,获得积分10
6秒前
水木应助CC采纳,获得10
7秒前
ljys发布了新的文献求助10
7秒前
匿名发布了新的文献求助30
7秒前
xx完成签到,获得积分10
8秒前
卫卫完成签到 ,获得积分10
8秒前
木悠发布了新的文献求助10
8秒前
leodu发布了新的文献求助10
9秒前
Ann完成签到,获得积分10
9秒前
9秒前
hzh完成签到 ,获得积分10
9秒前
科研通AI2S应助ly采纳,获得10
9秒前
丘比特应助高新慧采纳,获得10
10秒前
杪秋三十完成签到,获得积分10
10秒前
caixiayin发布了新的文献求助10
10秒前
xx发布了新的文献求助10
11秒前
乐友刘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
爆米花应助fgjkl采纳,获得10
12秒前
暖冬22发布了新的文献求助10
12秒前
12秒前
肖恩完成签到,获得积分20
12秒前
赵雨轩完成签到 ,获得积分10
13秒前
14秒前
匿名完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653