已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
SC完成签到,获得积分10
2秒前
竹筏过海应助科研通管家采纳,获得30
2秒前
SciGPT应助kyle竣采纳,获得10
2秒前
简单完成签到,获得积分10
3秒前
啾咪完成签到 ,获得积分10
9秒前
情怀应助派大星采纳,获得10
11秒前
乐观寄真完成签到 ,获得积分10
14秒前
清爽的雨竹完成签到 ,获得积分10
16秒前
俞安珊发布了新的文献求助30
20秒前
111完成签到 ,获得积分10
21秒前
Simen发布了新的文献求助10
21秒前
24秒前
爱读文献完成签到 ,获得积分10
25秒前
殊桐发布了新的文献求助10
28秒前
Simen完成签到,获得积分10
28秒前
脑洞疼应助xuan采纳,获得10
28秒前
28秒前
29秒前
TheaGao完成签到 ,获得积分10
30秒前
派大星发布了新的文献求助10
33秒前
33秒前
36秒前
784273145发布了新的文献求助10
37秒前
小二郎应助Yang采纳,获得10
38秒前
xuan发布了新的文献求助10
39秒前
39秒前
殊桐完成签到,获得积分10
40秒前
碧蓝世界完成签到 ,获得积分10
41秒前
称心文博发布了新的文献求助10
42秒前
香蕉觅云应助开心千青采纳,获得10
45秒前
寒冷的绿真完成签到 ,获得积分10
48秒前
龇牙鲨鱼完成签到,获得积分10
56秒前
1分钟前
lqd1234发布了新的文献求助50
1分钟前
HC完成签到 ,获得积分10
1分钟前
Syj2468完成签到 ,获得积分10
1分钟前
研友_LX045L发布了新的文献求助10
1分钟前
深情安青应助222采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940952
关于积分的说明 8499680
捐赠科研通 2615163
什么是DOI,文献DOI怎么找? 1428712
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355