模型预测控制
计算机科学
控制理论(社会学)
碰撞
并行计算
控制(管理)
人工智能
计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要
This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
科研通智能强力驱动
Strongly Powered by AbleSci AI