Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sia完成签到 ,获得积分10
1秒前
calm完成签到 ,获得积分10
1秒前
mion发布了新的文献求助10
2秒前
打打应助轻松如冬采纳,获得10
4秒前
cannon8发布了新的文献求助10
4秒前
玥越完成签到 ,获得积分10
4秒前
4秒前
斯文败类应助加油采纳,获得10
5秒前
受伤翠容完成签到,获得积分10
10秒前
柏林熊完成签到,获得积分10
10秒前
聪慧松思发布了新的文献求助10
10秒前
Dr.发布了新的文献求助30
10秒前
领导范儿应助学术混子采纳,获得10
11秒前
Muran完成签到,获得积分0
11秒前
12秒前
蚂蚱完成签到 ,获得积分10
13秒前
清脆松应助十三采纳,获得20
13秒前
大模型应助SI采纳,获得10
14秒前
GOD伟完成签到,获得积分10
15秒前
wind完成签到 ,获得积分10
15秒前
夜苍鹰完成签到 ,获得积分10
16秒前
long0809完成签到,获得积分10
16秒前
Zhang完成签到,获得积分10
16秒前
Dr.完成签到,获得积分10
18秒前
小米完成签到,获得积分10
18秒前
可爱的函函应助cannon8采纳,获得10
19秒前
bisalus发布了新的文献求助10
20秒前
陈小桥完成签到,获得积分10
20秒前
wen发布了新的文献求助10
21秒前
醉熏的似狮完成签到,获得积分10
21秒前
21秒前
GTthree完成签到,获得积分10
21秒前
22秒前
che完成签到 ,获得积分10
22秒前
22秒前
Tao完成签到 ,获得积分10
22秒前
22秒前
爱听歌帆布鞋完成签到 ,获得积分10
23秒前
奥特斌完成签到 ,获得积分10
27秒前
SI发布了新的文献求助10
27秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085527
求助须知:如何正确求助?哪些是违规求助? 2738431
关于积分的说明 7549700
捐赠科研通 2388188
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591