Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨小鸿发布了新的文献求助10
1秒前
2秒前
吴文章完成签到 ,获得积分10
2秒前
3秒前
皮卡丘发布了新的文献求助10
3秒前
sci2025opt完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
花里尘完成签到,获得积分10
6秒前
LSY完成签到 ,获得积分10
7秒前
青云发布了新的文献求助10
7秒前
月圆夜发布了新的文献求助10
7秒前
JunHan发布了新的文献求助10
9秒前
榴莲姑娘发布了新的文献求助10
10秒前
smh完成签到,获得积分10
11秒前
爬起来学习应助yyyy采纳,获得10
11秒前
Jack完成签到,获得积分10
12秒前
COSMOS_137完成签到 ,获得积分10
14秒前
14秒前
谨慎建辉完成签到,获得积分10
14秒前
薛潇完成签到,获得积分10
16秒前
留白完成签到 ,获得积分10
16秒前
17秒前
ry完成签到,获得积分10
18秒前
bindandande发布了新的文献求助10
19秒前
19秒前
20秒前
wly发布了新的文献求助10
20秒前
耶耶关注了科研通微信公众号
21秒前
汉堡包应助李雯雯采纳,获得10
21秒前
立冬完成签到,获得积分10
21秒前
21秒前
长情白桃完成签到,获得积分10
23秒前
活力老少女完成签到 ,获得积分10
23秒前
ANTI完成签到,获得积分10
24秒前
烟花应助杨小鸿采纳,获得10
24秒前
mo发布了新的文献求助30
25秒前
万有引力139完成签到,获得积分10
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742602
求助须知:如何正确求助?哪些是违规求助? 5409228
关于积分的说明 15345305
捐赠科研通 4883751
什么是DOI,文献DOI怎么找? 2625329
邀请新用户注册赠送积分活动 1574165
关于科研通互助平台的介绍 1531093