Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control

模型预测控制 计算机科学 控制理论(社会学) 碰撞 并行计算 控制(管理) 人工智能 计算机安全
作者
Zilong Cheng,Jun Ma,Wenxin Wang,Zicheng Zhu,Clarence W. de Silva,Tong Heng Lee
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tai.2024.3364127
摘要

This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this nonconvex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jisnoalia发布了新的文献求助10
刚刚
刚刚
刚刚
hu发布了新的文献求助10
刚刚
美满老头完成签到,获得积分10
1秒前
腼腆的赛君完成签到,获得积分10
1秒前
香蕉觅云应助123采纳,获得10
1秒前
121完成签到,获得积分10
1秒前
grt完成签到,获得积分10
1秒前
algain发布了新的文献求助10
2秒前
lwydxb12138完成签到,获得积分10
2秒前
高远玺完成签到 ,获得积分10
2秒前
苏苏诺诺2023完成签到,获得积分10
2秒前
可靠猎豹完成签到,获得积分10
2秒前
3秒前
SciGPT应助乐哉采纳,获得10
3秒前
3秒前
自觉士萧发布了新的文献求助10
3秒前
ValerieLI发布了新的文献求助10
3秒前
爱笑夜蕾发布了新的文献求助10
3秒前
yy发布了新的文献求助10
3秒前
粗犷的斑马完成签到,获得积分10
4秒前
4秒前
CipherSage应助GC采纳,获得10
5秒前
zz完成签到,获得积分10
5秒前
Hmbb发布了新的文献求助10
5秒前
5秒前
5秒前
mafangfang完成签到,获得积分10
5秒前
香蕉觅云应助刘轩雨采纳,获得10
6秒前
6秒前
6秒前
Sylwren完成签到,获得积分10
6秒前
喜宝完成签到 ,获得积分10
6秒前
乂氼完成签到 ,获得积分10
6秒前
优雅绮波完成签到 ,获得积分10
6秒前
xiaoxiaojiang完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
121发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006