Video2Music: Suitable music generation from videos using an Affective Multimodal Transformer model

计算机科学 变压器 语音识别 人工智能 计算机视觉 电气工程 电压 工程类
作者
Jaeyong Kang,Soujanya Poria,Dorien Herremans
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123640-123640 被引量:2
标识
DOI:10.1016/j.eswa.2024.123640
摘要

Numerous studies in the field of music generation have demonstrated impressive performance, yet virtually no models are able to directly generate music to match accompanying videos. In this work, we develop a generative music AI framework, Video2Music, that can match a provided video. We first curated a unique collection of music videos. Then, we analysed the music videos to obtain semantic, scene offset, motion, and emotion features. These distinct features are then employed as guiding input to our music generation model. We transcribe the audio files into MIDI and chords, and extract features such as note density and loudness. This results in a rich multimodal dataset, called MuVi-Sync, on which we train a novel Affective Multimodal Transformer (AMT) model to generate music given a video. This model includes a novel mechanism to enforce affective similarity between video and music. Finally, post-processing is performed based on a biGRU-based regression model to estimate note density and loudness based on the video features. This ensures a dynamic rendering of the generated chords with varying rhythm and volume. In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion. The musical quality, along with the quality of music-video matching is confirmed in a user study. The proposed AMT model, along with the new MuVi-Sync dataset, presents a promising step for the new task of music generation for videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuanying发布了新的文献求助10
刚刚
贝贝发布了新的文献求助20
刚刚
暖暖完成签到,获得积分20
刚刚
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
4秒前
枫叶随想应助一杯冰美式采纳,获得10
5秒前
健忘怜雪发布了新的文献求助30
6秒前
ding应助ChenYX采纳,获得10
6秒前
钙帮弟子完成签到,获得积分10
6秒前
ppxx发布了新的文献求助10
7秒前
暖暖发布了新的文献求助10
8秒前
8秒前
刘永红发布了新的文献求助10
8秒前
丁浩伦发布了新的文献求助10
8秒前
9秒前
端庄芾发布了新的文献求助10
11秒前
12秒前
科研人完成签到,获得积分10
14秒前
hulahula发布了新的文献求助10
16秒前
伶俐乌完成签到,获得积分10
17秒前
刘忙发布了新的文献求助30
17秒前
乔乔完成签到,获得积分10
18秒前
没有昵称完成签到,获得积分10
18秒前
19秒前
kwai完成签到,获得积分10
20秒前
22秒前
刘永红发布了新的文献求助30
22秒前
lilili应助YY采纳,获得10
22秒前
丁浩伦完成签到,获得积分10
22秒前
研友_nEjYyZ发布了新的文献求助10
23秒前
123345发布了新的文献求助10
24秒前
wwww威完成签到,获得积分10
25秒前
平常丝完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658