Video2Music: Suitable music generation from videos using an Affective Multimodal Transformer model

计算机科学 变压器 语音识别 人工智能 计算机视觉 电气工程 电压 工程类
作者
Jaeyong Kang,Soujanya Poria,Dorien Herremans
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 123640-123640 被引量:2
标识
DOI:10.1016/j.eswa.2024.123640
摘要

Numerous studies in the field of music generation have demonstrated impressive performance, yet virtually no models are able to directly generate music to match accompanying videos. In this work, we develop a generative music AI framework, Video2Music, that can match a provided video. We first curated a unique collection of music videos. Then, we analysed the music videos to obtain semantic, scene offset, motion, and emotion features. These distinct features are then employed as guiding input to our music generation model. We transcribe the audio files into MIDI and chords, and extract features such as note density and loudness. This results in a rich multimodal dataset, called MuVi-Sync, on which we train a novel Affective Multimodal Transformer (AMT) model to generate music given a video. This model includes a novel mechanism to enforce affective similarity between video and music. Finally, post-processing is performed based on a biGRU-based regression model to estimate note density and loudness based on the video features. This ensures a dynamic rendering of the generated chords with varying rhythm and volume. In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion. The musical quality, along with the quality of music-video matching is confirmed in a user study. The proposed AMT model, along with the new MuVi-Sync dataset, presents a promising step for the new task of music generation for videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qinhan完成签到,获得积分10
2秒前
3秒前
淡淡的忆彤完成签到,获得积分10
3秒前
明芬发布了新的文献求助10
3秒前
xxxt完成签到,获得积分10
3秒前
5秒前
东东东完成签到,获得积分10
5秒前
张光光完成签到,获得积分10
5秒前
铁锤发布了新的文献求助10
6秒前
7秒前
无私的以冬完成签到,获得积分10
7秒前
7秒前
8秒前
甜蜜鞅发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
X7完成签到,获得积分10
11秒前
娜na发布了新的文献求助10
12秒前
zx完成签到,获得积分10
15秒前
科研通AI2S应助花生采纳,获得10
16秒前
Yuantian发布了新的文献求助10
16秒前
小蘑菇应助MILK采纳,获得10
16秒前
XFF发布了新的文献求助10
17秒前
18秒前
18秒前
占营完成签到,获得积分10
19秒前
遥远的尧应助金晶采纳,获得10
19秒前
20秒前
20秒前
21秒前
21秒前
MILK完成签到,获得积分10
21秒前
打打应助jx采纳,获得10
22秒前
清脆的秋寒完成签到,获得积分10
23秒前
噜噜完成签到,获得积分20
23秒前
希望天下0贩的0应助Xue采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157798
求助须知:如何正确求助?哪些是违规求助? 2809143
关于积分的说明 7880515
捐赠科研通 2467613
什么是DOI,文献DOI怎么找? 1313602
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943