Context-Aware Consensus Algorithm for Blockchain-Empowered Federated Learning

计算机科学 可扩展性 背景(考古学) 一致性算法 一致性(知识库) 人工智能 算法 机器学习 数据库 生物 古生物学
作者
Yao Zhao,Youyang Qu,Yong Xiang,Feifei Chen,Longxiang Gao
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 491-503 被引量:3
标识
DOI:10.1109/tcc.2024.3372814
摘要

Supported by cloud computing, F ederated L earning (FL) has experienced rapid advancement, as a promising technique to motivate clients to collaboratively train models without sharing local data. To improve the security and fairness of FL implementation, numerous B lockchain-empowered F ederated L earning (BFL) frameworks have emerged accordingly. Among them, consensus algorithms play a pivotal role in determining the scalability, security, and consistency of BFL systems. Existing consensus solutions to block producer selection and reward allocation either focus on well-resourced scenarios or accommodate BFL based on clients' contributions to model training. However, these approaches limit consensus efficiency and undermine reward fairness, due to involving intricate consensus processes, disregarding clients' contributions during blockchain consensus, and failing to address lazy client problems (malicious clients plagiarizing local model updates from others to reap rewards). Given the aforementioned challenges, we make the first attempt to design a joint solution for efficient consensus and fair reward allocation in heterogeneous BFL systems with lazy clients. Specifically, we introduce a generalizable BFL workflow that can address lazy client problems well. Based on it, the global contribution of BFL clients is decoupled into five dominant metrics, and the block producer selection problem is formulated as a reward-constraint contribution maximization problem. By addressing this problem, the optimal block producer that maximizes global contribution can be identified to orchestrate consensus processes, and rewards are distributed to clients in proportion to their respective global contributions. To achieve it, we develop a C ontext-aware P roof- o f- C ontribution consensus algorithm named CPoC to reach consensus and incentive simultaneously, followed by theoretical analysis of lazy client problems and privacy issues. Empirical results on widely-used datasets demonstrate the effectiveness of our design in improving consensus efficiency and maximizing global contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LV完成签到,获得积分10
刚刚
1秒前
2秒前
隐形曼青应助元羞花采纳,获得10
2秒前
3秒前
cqnuly完成签到,获得积分10
3秒前
3秒前
上善若水完成签到,获得积分10
3秒前
积极的尔白完成签到 ,获得积分10
4秒前
4秒前
345完成签到,获得积分10
5秒前
5秒前
SH完成签到,获得积分20
6秒前
kk发布了新的文献求助10
6秒前
山水有重逢完成签到,获得积分10
6秒前
momo完成签到 ,获得积分10
6秒前
6秒前
7秒前
erhgbw完成签到,获得积分20
7秒前
huhu完成签到,获得积分10
7秒前
7秒前
Zzz完成签到,获得积分10
8秒前
李爱国应助zmk采纳,获得10
8秒前
川川子完成签到,获得积分10
8秒前
Hey完成签到 ,获得积分10
9秒前
YXHTCM完成签到,获得积分10
9秒前
尹冰露发布了新的文献求助10
9秒前
深情凡柔完成签到,获得积分10
9秒前
异常美梦发布了新的文献求助10
9秒前
10秒前
小雯钱来完成签到,获得积分10
10秒前
斯文败类应助勤劳滑板采纳,获得10
10秒前
shanshanerchuan完成签到,获得积分10
10秒前
好好学习完成签到,获得积分10
10秒前
singxu发布了新的文献求助10
10秒前
费老五发布了新的文献求助10
10秒前
ji完成签到,获得积分10
11秒前
执着的水杯完成签到,获得积分10
11秒前
黄蛋黄发布了新的文献求助10
12秒前
踏实志泽完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299039
求助须知:如何正确求助?哪些是违规求助? 2934083
关于积分的说明 8466490
捐赠科研通 2607435
什么是DOI,文献DOI怎么找? 1423733
科研通“疑难数据库(出版商)”最低求助积分说明 661661
邀请新用户注册赠送积分活动 645297