Context-Aware Consensus Algorithm for Blockchain-Empowered Federated Learning

计算机科学 可扩展性 背景(考古学) 一致性算法 一致性(知识库) 人工智能 算法 机器学习 数据库 生物 古生物学
作者
Yao Zhao,Youyang Qu,Yong Xiang,Feifei Chen,Longxiang Gao
出处
期刊:IEEE Transactions on Cloud Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 491-503 被引量:3
标识
DOI:10.1109/tcc.2024.3372814
摘要

Supported by cloud computing, F ederated L earning (FL) has experienced rapid advancement, as a promising technique to motivate clients to collaboratively train models without sharing local data. To improve the security and fairness of FL implementation, numerous B lockchain-empowered F ederated L earning (BFL) frameworks have emerged accordingly. Among them, consensus algorithms play a pivotal role in determining the scalability, security, and consistency of BFL systems. Existing consensus solutions to block producer selection and reward allocation either focus on well-resourced scenarios or accommodate BFL based on clients' contributions to model training. However, these approaches limit consensus efficiency and undermine reward fairness, due to involving intricate consensus processes, disregarding clients' contributions during blockchain consensus, and failing to address lazy client problems (malicious clients plagiarizing local model updates from others to reap rewards). Given the aforementioned challenges, we make the first attempt to design a joint solution for efficient consensus and fair reward allocation in heterogeneous BFL systems with lazy clients. Specifically, we introduce a generalizable BFL workflow that can address lazy client problems well. Based on it, the global contribution of BFL clients is decoupled into five dominant metrics, and the block producer selection problem is formulated as a reward-constraint contribution maximization problem. By addressing this problem, the optimal block producer that maximizes global contribution can be identified to orchestrate consensus processes, and rewards are distributed to clients in proportion to their respective global contributions. To achieve it, we develop a C ontext-aware P roof- o f- C ontribution consensus algorithm named CPoC to reach consensus and incentive simultaneously, followed by theoretical analysis of lazy client problems and privacy issues. Empirical results on widely-used datasets demonstrate the effectiveness of our design in improving consensus efficiency and maximizing global contribution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思思发布了新的文献求助10
刚刚
2秒前
无与伦比完成签到 ,获得积分10
3秒前
万能图书馆应助李钧鹏采纳,获得10
4秒前
JamesPei应助钼yanghua采纳,获得10
5秒前
10秒前
半夏完成签到,获得积分10
10秒前
小月发布了新的文献求助10
13秒前
爱听歌契完成签到 ,获得积分10
14秒前
cy发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
幸福的向彤完成签到,获得积分10
19秒前
上官若男应助郭慧梅采纳,获得10
23秒前
阔达代云完成签到,获得积分10
24秒前
刘齐完成签到,获得积分10
25秒前
28秒前
Eternity完成签到,获得积分10
28秒前
LUO完成签到,获得积分10
29秒前
29秒前
圆锥香蕉应助小皮不皮采纳,获得20
29秒前
李健的小迷弟应助思思采纳,获得10
30秒前
8564523完成签到,获得积分10
31秒前
32秒前
小奥发布了新的文献求助10
32秒前
yflag完成签到,获得积分10
32秒前
34秒前
37秒前
37秒前
郭慧梅发布了新的文献求助10
38秒前
今晚吃什么呢完成签到,获得积分10
41秒前
赘婿应助cy采纳,获得10
42秒前
43秒前
郭慧梅完成签到,获得积分10
47秒前
48秒前
48秒前
50秒前
李爱国应助zzululu2024采纳,获得10
52秒前
桃桃发布了新的文献求助10
52秒前
52秒前
Eason完成签到,获得积分10
53秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150