Minimum Redundancy Maximum Relevancy-Based Multiview Generation for Time Series Sensor Data Classification and its Application

冗余(工程) 计算机科学 系列(地层学) 时间序列 数据挖掘 人工智能 算法 模式识别(心理学) 机器学习 地质学 古生物学 操作系统
作者
Changchun He,Xin Huo,Chao Zhu,Songlin Chen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 12830-12839 被引量:1
标识
DOI:10.1109/jsen.2024.3371400
摘要

The extraction and ensemble of more diverse time series features has been continuously focused on by univariate time series classification (TSC) algorithm development. However, the feature stability is considered rarely by TSC algorithms, resulting in decreased algorithmic robustness to disturbed data and reduced classification performance. This article proposes a minimum redundancy maximum relevancy-based multiview generation (MRMR-MVG) TSC algorithm utilizing an ensemble feature selection architecture, improving the feature diversity and stability to benefit classification ability. Specifically, the raw series is mapped to the various series spaces containing different information, and the dilated convolution features are extracted from multiscale to increase feature diversity efficiently. Then, based on mutual information, extracted features are recombined via splitting and concatenation to generate three initial views that maximize correlation with labels. To further optimize the views, the objective function, which represents the feature correlation within the view, is minimized by exchanging allelic features between views based on the greedy strategy, improving the view features diversity and stability. Finally, the predicted outputs of three views are quickly ensemble via hard voting to get the final output label in the multiview ensemble. The effectiveness and advancement of the proposed MRMR-MVG algorithm are verified by comparative experiments on public UCR archive and fault diagnosis application on real excavator sensor datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
A9W01U完成签到,获得积分10
1秒前
blawxx完成签到,获得积分10
1秒前
Jasper应助Muggle采纳,获得10
3秒前
3秒前
宁宁壹号完成签到,获得积分10
5秒前
快乐的香菇关注了科研通微信公众号
6秒前
星辰大海应助Thi采纳,获得10
8秒前
9秒前
lhb发布了新的文献求助10
9秒前
叶子发布了新的文献求助10
12秒前
SciGPT应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
timemaster666应助科研通管家采纳,获得50
14秒前
InfoNinja应助科研通管家采纳,获得30
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
16秒前
金角大王发布了新的文献求助10
16秒前
18秒前
21秒前
筱灬发布了新的文献求助10
21秒前
21秒前
金角大王完成签到,获得积分10
22秒前
26秒前
26秒前
无花果应助xixi采纳,获得30
27秒前
28秒前
29秒前
wwww0wwww应助AC赵先生采纳,获得10
29秒前
29秒前
栗子完成签到,获得积分10
30秒前
大有阳光应助贲如音采纳,获得10
30秒前
31秒前
anananand发布了新的文献求助10
31秒前
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905