Minimum Redundancy Maximum Relevancy-Based Multiview Generation for Time Series Sensor Data Classification and its Application

冗余(工程) 计算机科学 系列(地层学) 时间序列 数据挖掘 人工智能 算法 模式识别(心理学) 机器学习 地质学 操作系统 古生物学
作者
Changchun He,Xin Huo,Chao Zhu,Songlin Chen
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (8): 12830-12839 被引量:1
标识
DOI:10.1109/jsen.2024.3371400
摘要

The extraction and ensemble of more diverse time series features has been continuously focused on by univariate time series classification (TSC) algorithm development. However, the feature stability is considered rarely by TSC algorithms, resulting in decreased algorithmic robustness to disturbed data and reduced classification performance. This article proposes a minimum redundancy maximum relevancy-based multiview generation (MRMR-MVG) TSC algorithm utilizing an ensemble feature selection architecture, improving the feature diversity and stability to benefit classification ability. Specifically, the raw series is mapped to the various series spaces containing different information, and the dilated convolution features are extracted from multiscale to increase feature diversity efficiently. Then, based on mutual information, extracted features are recombined via splitting and concatenation to generate three initial views that maximize correlation with labels. To further optimize the views, the objective function, which represents the feature correlation within the view, is minimized by exchanging allelic features between views based on the greedy strategy, improving the view features diversity and stability. Finally, the predicted outputs of three views are quickly ensemble via hard voting to get the final output label in the multiview ensemble. The effectiveness and advancement of the proposed MRMR-MVG algorithm are verified by comparative experiments on public UCR archive and fault diagnosis application on real excavator sensor datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的若颜完成签到,获得积分10
刚刚
星辰大海应助夜雨时采纳,获得10
刚刚
英俊的铭应助mty采纳,获得10
刚刚
刚刚
伊尔完成签到 ,获得积分10
刚刚
刚刚
1秒前
Nian_xinyue完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
gf完成签到,获得积分20
2秒前
cyx发布了新的文献求助10
3秒前
可耐的寒松完成签到,获得积分10
3秒前
xx发布了新的文献求助10
3秒前
英姑应助rrjl采纳,获得30
3秒前
3秒前
戚佳蕊发布了新的文献求助10
4秒前
大壮发布了新的文献求助10
4秒前
可爱的函函应助Azaspiro采纳,获得10
4秒前
kitty完成签到,获得积分10
4秒前
Krystal完成签到,获得积分10
4秒前
hhhhuo完成签到,获得积分10
4秒前
6秒前
江山发布了新的文献求助10
6秒前
6秒前
从不内卷发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
ZORO发布了新的文献求助10
7秒前
7秒前
莫仔发布了新的文献求助10
7秒前
7秒前
852应助壮观的人龙采纳,获得10
7秒前
8秒前
8秒前
无尘泪发布了新的文献求助20
8秒前
8秒前
yoyo发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668