Robot joint space grid error compensation based on three-dimensional discrete point space circular fitting

插值(计算机图形学) 克里金 采样(信号处理) 补偿(心理学) 机器人 网格 多元插值 计算机科学 算法 反距离权重法 共线性 航程(航空) 加权 数学 计算机视觉 几何学 人工智能 工程类 统计 双线性插值 心理学 精神分析 运动(物理) 医学 滤波器(信号处理) 机器学习 放射科 航空航天工程
作者
Yingjie Guo,Xuanhua Gao,Wei Yan Liang,Lei Miao,Shubin Zhao,Huiyue Dong
出处
期刊:Cirp Journal of Manufacturing Science and Technology [Elsevier BV]
卷期号:50: 140-150
标识
DOI:10.1016/j.cirpj.2024.02.011
摘要

The poor absolute positioning accuracy of industrial robots has limited their application in fields such as aerospace manufacturing. To address this issue, the spatial grid compensation method has been proposed as an effective solution. In this paper, we propose a sampling method based on three-dimensional discrete point space circular fitting for grid points to significantly reduce the sampling workload and improve compensation accuracy compared to traditional joint space grid compensation methods. Additionally, we use the Kriging interpolation algorithm instead of the inverse distance weighting (IDW) algorithm for spatial interpolation prediction of pose error. Based on this, the proposed sampling and interpolation prediction method in this paper was verified on a Comau NJ500–2.7 manipulator equipped with a fiber-laying end effector. The experimental results demonstrate that using our proposed sampling method yields pose data of grid points that have only a small deviation from directly sampled results and are only slightly higher than the robot's repeat positioning accuracy. Moreover, our proposed method can significantly reduce the sampling workload by 60% under the experimental conditions of this study (sampling 10 groups of data within 90 degrees range), with increasing sampling range leading to more obvious efficiency improvements. Finally, we show that compared to the IDW algorithm, the Kriging interpolation algorithm yields better results and improves the mean absolute positioning accuracy of robots after compensation by 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
11完成签到 ,获得积分10
1秒前
星期五发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
猪猪hero应助李锐采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
共享精神应助受伤雨南采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
南山无梅落应助李锐采纳,获得10
4秒前
ED应助李锐采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
蔓越莓蛋糕应助李锐采纳,获得10
4秒前
猪猪hero应助李锐采纳,获得10
4秒前
5秒前
Strongly完成签到,获得积分10
5秒前
念姬发布了新的文献求助10
6秒前
7秒前
清茶发布了新的文献求助10
7秒前
7秒前
9秒前
Tumbleweed668发布了新的文献求助10
11秒前
pipi发布了新的文献求助10
11秒前
13秒前
xu发布了新的文献求助10
13秒前
14秒前
17秒前
友利奈绪完成签到,获得积分10
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
20秒前
友利奈绪发布了新的文献求助10
21秒前
你还睡得着完成签到 ,获得积分10
21秒前
CodeCraft应助清茶采纳,获得10
23秒前
邢文瑞发布了新的文献求助10
24秒前
深情安青应助KKK采纳,获得10
24秒前
xu完成签到,获得积分10
24秒前
佳佳应助pipi采纳,获得10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962893
求助须知:如何正确求助?哪些是违规求助? 3508839
关于积分的说明 11143458
捐赠科研通 3241757
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873058
科研通“疑难数据库(出版商)”最低求助积分说明 803579