Graph Convolutional Networks based short-term load forecasting: Leveraging spatial information for improved accuracy

期限(时间) 计算机科学 图形 人工智能 数据挖掘 理论计算机科学 量子力学 物理
作者
Haris Mansoor,Muhammad Shuzub Gull,Huzaifa Rauf,Inam Ul Hasan Shaikh,Muhammad Khalid,Naveed Arshad
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:230: 110263-110263 被引量:3
标识
DOI:10.1016/j.epsr.2024.110263
摘要

Accurate short-term load forecasting is vital for the efficient operation of the power sector. The challenge of predicting fine-resolution load, such as weekly load, is compounded by its inherent volatility and stochastic nature. However, forecasting becomes more tractable at higher scales, such as user clusters, where fluctuations are smoothed out. Existing methods focus solely on temporal data and auto-regressive processes for load prediction, disregarding the spatial information inherent in the power grid's graphical structure. This research proposes an innovative approach that integrates spatial and temporal information for short-term load forecasting. A novel technique is introduced to convert load data into a graphical representation, which is then processed by Graph Convolutional Networks (GCN) to capture spatial embeddings. These GCN embeddings, in conjunction with temporal features, are employed for load prediction. Rigorous experimentation employing advanced machine learning and deep learning techniques validates the effectiveness of the proposed approach. The findings reveal that leveraging spatial information through GCN embeddings significantly enhances load forecasting performance, leading to improvements of up to 39% which emphasize the potential of proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
小马甲应助英勇的哲瀚采纳,获得10
1秒前
XUU发布了新的文献求助10
1秒前
Five完成签到,获得积分20
1秒前
天天快乐应助April采纳,获得10
1秒前
MM完成签到 ,获得积分10
2秒前
penny0000完成签到,获得积分10
4秒前
李健的粉丝团团长应助CC采纳,获得10
5秒前
boymin2015完成签到 ,获得积分10
5秒前
yg发布了新的文献求助10
5秒前
科研通AI2S应助李胡安采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
Owen应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
樱悼柳雪完成签到,获得积分10
7秒前
ZOE应助科研通管家采纳,获得30
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
细心青雪完成签到 ,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Stella应助科研通管家采纳,获得10
7秒前
嘉佳伽应助科研通管家采纳,获得30
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
1Yer6完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124