Graph Convolutional Networks based short-term load forecasting: Leveraging spatial information for improved accuracy

期限(时间) 计算机科学 图形 人工智能 数据挖掘 理论计算机科学 量子力学 物理
作者
Haris Mansoor,Muhammad Shuzub Gull,Huzaifa Rauf,Inam Ul Hasan Shaikh,Muhammad Khalid,Naveed Arshad
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:230: 110263-110263 被引量:3
标识
DOI:10.1016/j.epsr.2024.110263
摘要

Accurate short-term load forecasting is vital for the efficient operation of the power sector. The challenge of predicting fine-resolution load, such as weekly load, is compounded by its inherent volatility and stochastic nature. However, forecasting becomes more tractable at higher scales, such as user clusters, where fluctuations are smoothed out. Existing methods focus solely on temporal data and auto-regressive processes for load prediction, disregarding the spatial information inherent in the power grid's graphical structure. This research proposes an innovative approach that integrates spatial and temporal information for short-term load forecasting. A novel technique is introduced to convert load data into a graphical representation, which is then processed by Graph Convolutional Networks (GCN) to capture spatial embeddings. These GCN embeddings, in conjunction with temporal features, are employed for load prediction. Rigorous experimentation employing advanced machine learning and deep learning techniques validates the effectiveness of the proposed approach. The findings reveal that leveraging spatial information through GCN embeddings significantly enhances load forecasting performance, leading to improvements of up to 39% which emphasize the potential of proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JCY123发布了新的文献求助10
刚刚
首席或雪月完成签到,获得积分10
1秒前
xia完成签到 ,获得积分10
2秒前
领导范儿应助刘晓丹采纳,获得20
2秒前
舒适的雁风完成签到,获得积分10
3秒前
简单冰淇淋完成签到,获得积分10
3秒前
Cyrus完成签到,获得积分10
4秒前
zhuxiaonian完成签到,获得积分10
4秒前
liuxh123发布了新的文献求助10
4秒前
不知道在干嘛完成签到,获得积分10
4秒前
无心的青寒完成签到,获得积分10
5秒前
fpy完成签到,获得积分10
5秒前
tinatian270完成签到,获得积分10
6秒前
王铂然完成签到 ,获得积分10
6秒前
论文小能手完成签到,获得积分20
7秒前
7秒前
feilei完成签到,获得积分10
7秒前
7秒前
huluwa完成签到,获得积分10
7秒前
tangyong完成签到,获得积分10
7秒前
wanci应助JCY123采纳,获得10
7秒前
上官若男应助CharlieYue采纳,获得10
7秒前
zz完成签到,获得积分10
7秒前
格兰德法泽尔完成签到,获得积分10
8秒前
flac3d完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
momo应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
好好应助科研通管家采纳,获得10
8秒前
丹D应助科研通管家采纳,获得10
8秒前
Jared应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
小铭同学完成签到,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
舒服的幻梅完成签到 ,获得积分10
9秒前
浅笑发布了新的文献求助10
9秒前
Jasper应助15采纳,获得10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626