Graph Convolutional Networks based short-term load forecasting: Leveraging spatial information for improved accuracy

期限(时间) 计算机科学 图形 人工智能 数据挖掘 理论计算机科学 量子力学 物理
作者
Haris Mansoor,Muhammad Shuzub Gull,Huzaifa Rauf,Inam Ul Hasan Shaikh,Muhammad Khalid,Naveed Arshad
出处
期刊:Electric Power Systems Research [Elsevier BV]
卷期号:230: 110263-110263 被引量:3
标识
DOI:10.1016/j.epsr.2024.110263
摘要

Accurate short-term load forecasting is vital for the efficient operation of the power sector. The challenge of predicting fine-resolution load, such as weekly load, is compounded by its inherent volatility and stochastic nature. However, forecasting becomes more tractable at higher scales, such as user clusters, where fluctuations are smoothed out. Existing methods focus solely on temporal data and auto-regressive processes for load prediction, disregarding the spatial information inherent in the power grid's graphical structure. This research proposes an innovative approach that integrates spatial and temporal information for short-term load forecasting. A novel technique is introduced to convert load data into a graphical representation, which is then processed by Graph Convolutional Networks (GCN) to capture spatial embeddings. These GCN embeddings, in conjunction with temporal features, are employed for load prediction. Rigorous experimentation employing advanced machine learning and deep learning techniques validates the effectiveness of the proposed approach. The findings reveal that leveraging spatial information through GCN embeddings significantly enhances load forecasting performance, leading to improvements of up to 39% which emphasize the potential of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫燕梦发布了新的文献求助10
刚刚
香蕉觅云应助Super_跃采纳,获得10
刚刚
刚刚
Vito完成签到 ,获得积分10
1秒前
见青完成签到,获得积分10
1秒前
1秒前
京墨发布了新的文献求助10
2秒前
在水一方应助wocala采纳,获得10
2秒前
2秒前
caixiayin发布了新的文献求助10
3秒前
3秒前
飞快的奇异果完成签到,获得积分10
4秒前
4秒前
4秒前
顾矜应助maiyatang采纳,获得10
4秒前
LLL发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
易安发布了新的文献求助30
6秒前
ELend完成签到,获得积分10
7秒前
7秒前
Sun发布了新的文献求助10
7秒前
laowang完成签到,获得积分10
7秒前
fujun完成签到,获得积分10
8秒前
8秒前
zyx发布了新的文献求助10
8秒前
夜半发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助DJ采纳,获得10
8秒前
莫燕梦完成签到,获得积分10
9秒前
10秒前
10秒前
YY完成签到 ,获得积分10
11秒前
Hepatology发布了新的文献求助10
11秒前
绿色的yu完成签到 ,获得积分10
11秒前
11秒前
fgjkl完成签到 ,获得积分10
12秒前
12秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650