富勒烯
电介质
有机太阳能电池
接受者
材料科学
太阳能电池
电子受体
高-κ电介质
光电子学
化学物理
光化学
化学
物理
复合材料
有机化学
凝聚态物理
聚合物
作者
Xinjun He,Qi Feng,Xinhui Zou,Yanxun Li,Heng Liu,Xinhui Lu,Kam Sing Wong,Alex K.‐Y. Jen,Wallace C. H. Choy
标识
DOI:10.1038/s41467-024-46352-2
摘要
Dielectric constant of non-fullerene acceptors plays a critical role in organic solar cells in terms of exciton dissociation and charge recombination. Current acceptors feature a dielectric constant of 3-4, correlating to relatively high recombination loss. We demonstrate that selenium substitution on acceptor central core can effectively modify molecule dielectric constant. The corresponding blend film presents faster hole-transfer of ~5 ps compared to the sulfur-based derivative (~10 ps). However, the blends with Se-acceptor also show faster charge recombination after 100 ps upon optical pumping, which is explained by the relatively disordered stacking of the Se-acceptor. Encouragingly, dispersing the Se-acceptor in an optimized organic solar cell system can interrupt the disordered aggregation while still retain high dielectric constant. With the improved dielectric constant and optimized fibril morphology, the ternary device exhibits an obvious reduction of non-radiative recombination to 0.221 eV and high efficiency of 19.0%. This work unveils heteroatom-substitution induced dielectric constant improvement, and the associated exciton dynamics and morphology manipulation, which finally contributes to better material/device design and improved device performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI