A new method for point cloud registration: Adaptive relation-oriented convolution and recurrent correspondence-walk

点云 计算机科学 判别式 邻里(数学) 特征(语言学) 算法 人工智能 约束(计算机辅助设计) 加权 模式识别(心理学) 数据挖掘 理论计算机科学 数学 医学 放射科 语言学 数学分析 哲学 几何学
作者
Feilong Cao,Lei Zhu,Hailiang Ye,Chenglin Wen,Qinghua Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111280-111280 被引量:4
标识
DOI:10.1016/j.knosys.2023.111280
摘要

For point cloud registration (PCR), a matching matrix is critical. Unfortunately, the existing approaches do not explicitly devise schemes to refine the matching matrix. Furthermore, previous studies focused on the design of feature interactions between two point clouds and lacked attention to the discriminative features required for point cloud registration. This study presents a novel PCR method called RecARONet. The method mainly includes two innovations: an adaptive relation-oriented convolution (ARO-Conv) with effectiveness and a recurrent refinement technique of the correspondence based on the adaptive neighbourhood consensus constraint, mainly for more accurate registration. Specifically, ARO-Conv reconstructs the node representation by weighting the relations in the local neighbourhood rather than generating point features from the embeddings of the neighbours. This simple but effective operation can reduce feature redundancy and alleviate structural smoothness to a certain extent. It can also assign appropriate weights to the relations and different channels of features to capture more distinct local topological information. In addition, a recurrent correspondence-walk with a semantic adornment algorithm based on the adaptive neighbourhood consensus constraint is depicted, which can adaptively capture the differences in the local structure among proxy point pairs and recurrently update correspondences. Registration evaluations were performed on several complete/partial point cloud datasets, which revealed that the constructed model achieved excellent performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nas关闭了nas文献求助
1秒前
上官若男应助自己采纳,获得10
2秒前
CMD完成签到 ,获得积分10
2秒前
6秒前
NexusExplorer应助saisai采纳,获得20
6秒前
7秒前
7秒前
8秒前
打打应助布丁大王采纳,获得10
9秒前
赵西里发布了新的文献求助30
10秒前
懒大王完成签到 ,获得积分10
11秒前
12秒前
12秒前
自己完成签到,获得积分10
13秒前
七个小矮人完成签到,获得积分10
14秒前
婧婧发布了新的文献求助10
18秒前
20秒前
21秒前
MS903发布了新的文献求助10
24秒前
24秒前
25秒前
张馨月发布了新的文献求助10
25秒前
27秒前
28秒前
29秒前
材料小白完成签到 ,获得积分10
29秒前
healer完成签到,获得积分10
29秒前
执笔发布了新的文献求助10
29秒前
AOPs完成签到,获得积分10
30秒前
31秒前
重师大大怪完成签到,获得积分10
31秒前
32秒前
healer发布了新的文献求助20
32秒前
xuanxuan1205发布了新的文献求助10
32秒前
33秒前
扣扣尼哇发布了新的文献求助10
34秒前
37秒前
DZ完成签到 ,获得积分10
37秒前
小王完成签到,获得积分10
37秒前
星辰大海应助糟糕的夏云采纳,获得10
39秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508495
关于积分的说明 11141261
捐赠科研通 3241177
什么是DOI,文献DOI怎么找? 1791399
邀请新用户注册赠送积分活动 872861
科研通“疑难数据库(出版商)”最低求助积分说明 803396