A new method for point cloud registration: Adaptive relation-oriented convolution and recurrent correspondence-walk

点云 计算机科学 判别式 邻里(数学) 特征(语言学) 算法 人工智能 约束(计算机辅助设计) 加权 模式识别(心理学) 数据挖掘 理论计算机科学 数学 医学 放射科 语言学 数学分析 哲学 几何学
作者
Feilong Cao,Lei Zhu,Hailiang Ye,Chenglin Wen,Qinghua Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111280-111280 被引量:4
标识
DOI:10.1016/j.knosys.2023.111280
摘要

For point cloud registration (PCR), a matching matrix is critical. Unfortunately, the existing approaches do not explicitly devise schemes to refine the matching matrix. Furthermore, previous studies focused on the design of feature interactions between two point clouds and lacked attention to the discriminative features required for point cloud registration. This study presents a novel PCR method called RecARONet. The method mainly includes two innovations: an adaptive relation-oriented convolution (ARO-Conv) with effectiveness and a recurrent refinement technique of the correspondence based on the adaptive neighbourhood consensus constraint, mainly for more accurate registration. Specifically, ARO-Conv reconstructs the node representation by weighting the relations in the local neighbourhood rather than generating point features from the embeddings of the neighbours. This simple but effective operation can reduce feature redundancy and alleviate structural smoothness to a certain extent. It can also assign appropriate weights to the relations and different channels of features to capture more distinct local topological information. In addition, a recurrent correspondence-walk with a semantic adornment algorithm based on the adaptive neighbourhood consensus constraint is depicted, which can adaptively capture the differences in the local structure among proxy point pairs and recurrently update correspondences. Registration evaluations were performed on several complete/partial point cloud datasets, which revealed that the constructed model achieved excellent performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asia完成签到 ,获得积分10
1秒前
领导范儿应助Ting采纳,获得10
2秒前
3秒前
安子完成签到 ,获得积分10
3秒前
yuanjie发布了新的文献求助30
5秒前
syy完成签到 ,获得积分10
5秒前
丘比特应助山楂采纳,获得10
5秒前
6秒前
6秒前
7秒前
9秒前
天天完成签到 ,获得积分10
9秒前
11秒前
asdfqwer应助wfk采纳,获得10
11秒前
12秒前
zyt发布了新的文献求助10
14秒前
15秒前
Ting发布了新的文献求助10
16秒前
16秒前
18秒前
一颗egg发布了新的文献求助30
18秒前
朴素的不乐完成签到 ,获得积分10
19秒前
19秒前
XS_QI发布了新的文献求助10
19秒前
忧心的鞋子完成签到,获得积分10
21秒前
21秒前
AoAoo完成签到,获得积分10
22秒前
王壮壮完成签到,获得积分10
22秒前
snail01完成签到,获得积分10
23秒前
bio生物发布了新的文献求助10
23秒前
Orange应助积极万声采纳,获得10
23秒前
25秒前
27秒前
27秒前
27秒前
隐形曼青应助zjh采纳,获得10
27秒前
suy发布了新的文献求助10
28秒前
29秒前
31秒前
程瑞哲发布了新的文献求助80
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869564
求助须知:如何正确求助?哪些是违规求助? 6453599
关于积分的说明 15661432
捐赠科研通 4985461
什么是DOI,文献DOI怎么找? 2688396
邀请新用户注册赠送积分活动 1630824
关于科研通互助平台的介绍 1588937