Frequency-aware robust multidimensional information fusion framework for remote sensing image segmentation

计算机科学 分割 人工智能 稳健性(进化) 计算机视觉 模式识别(心理学) 相互信息 图像分割 数据挖掘 生物化学 基因 化学
作者
Junyu Fan,Jinjiang Li,Yepeng Liu,Fan Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107638-107638 被引量:3
标识
DOI:10.1016/j.engappai.2023.107638
摘要

Urban scene image segmentation is an important research area in high-resolution remote sensing image processing. However, due to its complex three-dimensional structure, interference factors such as occlusion, shadow, intra-class inconsistency, and inter-class indistinction affect segmentation performance. Many methods have combined local and global information using CNNs and Transformers to achieve high performance in remote sensing image segmentation tasks. However, these methods are not stable when dealing with these interference factors. Recent studies have found that semantic segmentation is highly sensitive to frequency information, so we introduced frequency information to make the model learn more comprehensively about different categories of targets from multiple dimensions. By modeling the target with local features, global information, and frequency information, the target features can be learned in multiple dimensions to reduce the impact of interference factors on the model and improve its robustness. In this paper, we consider frequency information in addition to combining CNNs and Transformers for modeling and propose a Multidimensional Information Fusion Network (MIFNet) for high-resolution remote sensing image segmentation of urban scenes. Specifically, we design an information fusion Transformer module that can adaptively associate local features, global semantic information, and frequency information and a relevant semantic aggregation module for aggregating features at different scales to construct the decoder. By aggregating image features at different depths, the specific representation of the target and the correlation between targets can be modeled in multiple dimensions, allowing the network to better recognize and understand the features of each class of targets to resist various interference factors that affect segmentation performance. We conducted extensive ablation experiments and comparative experiments on the ISPRS Vaihingen and ISPRS Potsdam benchmarks to verify our proposed method. In a large number of experiments, our method achieved the best results, with 84.53% and 87.3% mIoU scores on the Vaihingen and Potsdam datasets, respectively, proving the superiority of our method. The source code will be available at https://github.com/JunyuFan/MIFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lifescience1完成签到,获得积分10
1秒前
1秒前
3秒前
zhuooo完成签到,获得积分10
3秒前
3秒前
lifescience1发布了新的文献求助10
4秒前
梁朝伟应助科研一路通采纳,获得10
4秒前
啾啾发布了新的文献求助10
4秒前
英姑应助田国兵采纳,获得10
4秒前
5秒前
5秒前
TBHP完成签到,获得积分10
5秒前
柠檬茶156发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
8秒前
dream发布了新的文献求助10
8秒前
9秒前
11发布了新的文献求助30
9秒前
10秒前
Lr完成签到,获得积分10
11秒前
INBI发布了新的文献求助10
11秒前
顺利富发布了新的文献求助10
11秒前
淡淡紫寒发布了新的文献求助10
12秒前
rengar完成签到,获得积分10
12秒前
充电宝应助logan采纳,获得10
13秒前
科研哈士奇完成签到,获得积分10
13秒前
文章必发发布了新的文献求助10
13秒前
CJ发布了新的文献求助10
15秒前
键盘车神完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
小一发布了新的文献求助10
19秒前
妄语完成签到 ,获得积分10
20秒前
强健的雅绿完成签到,获得积分10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170673
求助须知:如何正确求助?哪些是违规求助? 2821714
关于积分的说明 7936172
捐赠科研通 2482144
什么是DOI,文献DOI怎么找? 1322341
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608