Deep learning based synthesis of MRI, CT and PET: Review and analysis

深度学习 计算机科学 人工智能 工作流程 医学影像学 模态(人机交互) 模式 正电子发射断层摄影术 图像合成 机器学习 图像(数学) 放射科 医学 社会科学 数据库 社会学
作者
Sanuwani Dayarathna,Kh Tohidul Islam,Sergio Uribe,Guang Yang,Munawar Hayat,Zhaolin Chen
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:92: 103046-103046 被引量:136
标识
DOI:10.1016/j.media.2023.103046
摘要

Medical image synthesis represents a critical area of research in clinical decision-making, aiming to overcome the challenges associated with acquiring multiple image modalities for an accurate clinical workflow. This approach proves beneficial in estimating an image of a desired modality from a given source modality among the most common medical imaging contrasts, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). However, translating between two image modalities presents difficulties due to the complex and non-linear domain mappings. Deep learning-based generative modelling has exhibited superior performance in synthetic image contrast applications compared to conventional image synthesis methods. This survey comprehensively reviews deep learning-based medical imaging translation from 2018 to 2023 on pseudo-CT, synthetic MR, and synthetic PET. We provide an overview of synthetic contrasts in medical imaging and the most frequently employed deep learning networks for medical image synthesis. Additionally, we conduct a detailed analysis of each synthesis method, focusing on their diverse model designs based on input domains and network architectures. We also analyse novel network architectures, ranging from conventional CNNs to the recent Transformer and Diffusion models. This analysis includes comparing loss functions, available datasets and anatomical regions, and image quality assessments and performance in other downstream tasks. Finally, we discuss the challenges and identify solutions within the literature, suggesting possible future directions. We hope that the insights offered in this survey paper will serve as a valuable roadmap for researchers in the field of medical image synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助予秋采纳,获得10
刚刚
1秒前
朴素小鸟胃完成签到,获得积分10
1秒前
1秒前
1秒前
俭朴新之完成签到 ,获得积分10
1秒前
完美世界应助长风采纳,获得10
1秒前
1秒前
yiyayiya发布了新的文献求助10
2秒前
隐形曼青应助阿谭采纳,获得10
2秒前
星辰大海应助酷炫翠柏采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
嘿嘿应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
demonsnow应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
三三完成签到,获得积分10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
Hello应助苗条狗采纳,获得10
5秒前
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
不加糖发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625062
求助须知:如何正确求助?哪些是违规求助? 4710920
关于积分的说明 14953055
捐赠科研通 4778964
什么是DOI,文献DOI怎么找? 2553547
邀请新用户注册赠送积分活动 1515490
关于科研通互助平台的介绍 1475770