HD-Net: High-resolution decoupled network for building footprint extraction via deeply supervised body and boundary decomposition

足迹 萃取(化学) 边界(拓扑) 分解 计算机科学 网(多面体) 人工智能 高分辨率 地质学 遥感 数学 几何学 化学 古生物学 色谱法 数学分析 有机化学
作者
Y. Li,Danfeng Hong,Chenyu Li,Jing Yao,Jocelyn Chanussot
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:209: 51-65 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.01.022
摘要

The extraction of building footprints, as a highly challenging task in remote sensing (RS) image-based geospatial object detection and recognition, holds significant importance. Due to the strong coupling in RS images between the body and boundary of buildings, the ability of most currently advanced deep learning models in building footprint extraction remains limited, inevitably meeting the extraction performance bottleneck. To this end, we propose a novel High-resolution Decoupled Network, HD-Net for short, for precious building footprint extraction in RS. HD-Net follows the well-known high-resolution network (HRNet) architecture, which can to a great extent alleviate the coupling issues between body and boundary using its multi-scale information interaction in parallel. More specifically, Our HD-Net innovatively designs the multiple stacked multi-scale feature fusion (MFF) modules, where the MFF module is performed by combining the deep supervision technique and a feature decoupling–recoupling (FDR) module. The FDR module adeptly untangles coupled features into two distinct elements: body and boundary, yielding feature maps enriched with semantic information. This configuration facilitates a step-wise refinement of building extraction and boundary predictions, ensuring the overall continuity of buildings and the precision of their boundaries. Experiments conducted on the three widely-used building datasets, i.e., Massachusetts, WHU, and Inria, demonstrate that HD-Net achieves the most competitive results with minimal parameter count. In detail, HD-Net outperforms contour-guided and local structure-aware network (CGSANet) with intersection over union (IoU) improvements of 0.40%, 0.95%, and 0.73% on the mentioned datasets, while CGSANet is the state-of-the-art algorithm using a hybrid loss function and deep supervision strategy. Furthermore, the code of the HD-Net will be made available freely at https://github.com/danfenghong/ISPRS_HD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿Q完成签到,获得积分10
1秒前
Yziii举报阳光的烨霖求助涉嫌违规
1秒前
科研通AI2S应助北木萧采纳,获得10
2秒前
田様应助胡1111采纳,获得10
2秒前
李桢发布了新的文献求助10
2秒前
2秒前
3秒前
斯文败类应助nhz采纳,获得10
3秒前
nanlinhua完成签到,获得积分10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
微不足道发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
深情安青应助研友_LNoDrn采纳,获得20
4秒前
5秒前
5秒前
可爱的函函应助开心绿柳采纳,获得10
5秒前
5秒前
5秒前
dawnyue发布了新的文献求助10
5秒前
浮尘完成签到,获得积分10
6秒前
机灵大炮完成签到,获得积分10
6秒前
6秒前
木沂完成签到 ,获得积分10
7秒前
7秒前
水上书发布了新的文献求助10
8秒前
9秒前
lei发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419