HD-Net: High-resolution decoupled network for building footprint extraction via deeply supervised body and boundary decomposition

足迹 萃取(化学) 边界(拓扑) 分解 计算机科学 网(多面体) 人工智能 高分辨率 地质学 遥感 数学 几何学 化学 古生物学 色谱法 数学分析 有机化学
作者
Yuxuan Li,Danfeng Hong,Chenyu Li,Jing Yao,Jocelyn Chanussot
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:209: 51-65 被引量:58
标识
DOI:10.1016/j.isprsjprs.2024.01.022
摘要

The extraction of building footprints, as a highly challenging task in remote sensing (RS) image-based geospatial object detection and recognition, holds significant importance. Due to the strong coupling in RS images between the body and boundary of buildings, the ability of most currently advanced deep learning models in building footprint extraction remains limited, inevitably meeting the extraction performance bottleneck. To this end, we propose a novel High-resolution Decoupled Network, HD-Net for short, for precious building footprint extraction in RS. HD-Net follows the well-known high-resolution network (HRNet) architecture, which can to a great extent alleviate the coupling issues between body and boundary using its multi-scale information interaction in parallel. More specifically, Our HD-Net innovatively designs the multiple stacked multi-scale feature fusion (MFF) modules, where the MFF module is performed by combining the deep supervision technique and a feature decoupling–recoupling (FDR) module. The FDR module adeptly untangles coupled features into two distinct elements: body and boundary, yielding feature maps enriched with semantic information. This configuration facilitates a step-wise refinement of building extraction and boundary predictions, ensuring the overall continuity of buildings and the precision of their boundaries. Experiments conducted on the three widely-used building datasets, i.e., Massachusetts, WHU, and Inria, demonstrate that HD-Net achieves the most competitive results with minimal parameter count. In detail, HD-Net outperforms contour-guided and local structure-aware network (CGSANet) with intersection over union (IoU) improvements of 0.40%, 0.95%, and 0.73% on the mentioned datasets, while CGSANet is the state-of-the-art algorithm using a hybrid loss function and deep supervision strategy. Furthermore, the code of the HD-Net will be made available freely at https://github.com/danfenghong/ISPRS_HD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wizzzzzzzy发布了新的文献求助10
刚刚
necos发布了新的文献求助10
3秒前
3秒前
4秒前
fmx完成签到,获得积分10
4秒前
残剑月发布了新的文献求助10
5秒前
5秒前
weihongjuan发布了新的文献求助10
5秒前
帅气的馒头应助酷炫初雪采纳,获得10
5秒前
janette完成签到,获得积分10
6秒前
爆米花应助乌衣白马采纳,获得10
6秒前
6秒前
财神爷心尖尖的宝儿完成签到,获得积分10
7秒前
zyc发布了新的文献求助10
7秒前
nn完成签到,获得积分20
7秒前
阿屁屁猪完成签到,获得积分10
9秒前
9秒前
TearMarks完成签到 ,获得积分10
9秒前
小白发布了新的文献求助200
9秒前
9秒前
酷波er应助baobaot采纳,获得10
10秒前
勿忘9451发布了新的文献求助10
10秒前
研友_Z6G2D8完成签到,获得积分10
10秒前
可爱的函函应助pjjpk01采纳,获得10
11秒前
贝尔摩德发布了新的文献求助10
12秒前
CR完成签到,获得积分10
13秒前
Liuya发布了新的文献求助10
13秒前
13秒前
科目三应助辛勤面包采纳,获得10
13秒前
Mrlazy发布了新的文献求助10
13秒前
小蘑菇应助马明旋采纳,获得10
13秒前
13秒前
14秒前
14秒前
紫丁香完成签到 ,获得积分10
15秒前
16秒前
16秒前
陈BB发布了新的文献求助20
16秒前
ww完成签到,获得积分10
16秒前
田小班完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836