HD-Net: High-resolution decoupled network for building footprint extraction via deeply supervised body and boundary decomposition

足迹 萃取(化学) 边界(拓扑) 分解 计算机科学 网(多面体) 人工智能 高分辨率 地质学 遥感 数学 几何学 化学 古生物学 色谱法 数学分析 有机化学
作者
Y. Li,Danfeng Hong,Chenyu Li,Jing Yao,Jocelyn Chanussot
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:209: 51-65 被引量:9
标识
DOI:10.1016/j.isprsjprs.2024.01.022
摘要

The extraction of building footprints, as a highly challenging task in remote sensing (RS) image-based geospatial object detection and recognition, holds significant importance. Due to the strong coupling in RS images between the body and boundary of buildings, the ability of most currently advanced deep learning models in building footprint extraction remains limited, inevitably meeting the extraction performance bottleneck. To this end, we propose a novel High-resolution Decoupled Network, HD-Net for short, for precious building footprint extraction in RS. HD-Net follows the well-known high-resolution network (HRNet) architecture, which can to a great extent alleviate the coupling issues between body and boundary using its multi-scale information interaction in parallel. More specifically, Our HD-Net innovatively designs the multiple stacked multi-scale feature fusion (MFF) modules, where the MFF module is performed by combining the deep supervision technique and a feature decoupling–recoupling (FDR) module. The FDR module adeptly untangles coupled features into two distinct elements: body and boundary, yielding feature maps enriched with semantic information. This configuration facilitates a step-wise refinement of building extraction and boundary predictions, ensuring the overall continuity of buildings and the precision of their boundaries. Experiments conducted on the three widely-used building datasets, i.e., Massachusetts, WHU, and Inria, demonstrate that HD-Net achieves the most competitive results with minimal parameter count. In detail, HD-Net outperforms contour-guided and local structure-aware network (CGSANet) with intersection over union (IoU) improvements of 0.40%, 0.95%, and 0.73% on the mentioned datasets, while CGSANet is the state-of-the-art algorithm using a hybrid loss function and deep supervision strategy. Furthermore, the code of the HD-Net will be made available freely at https://github.com/danfenghong/ISPRS_HD-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
略略略完成签到,获得积分10
刚刚
汉堡包应助EED采纳,获得10
刚刚
坦率的匪举报xz求助涉嫌违规
1秒前
顾矜应助Deny采纳,获得10
2秒前
杪秋三十发布了新的文献求助30
3秒前
zy发布了新的文献求助10
3秒前
陈鑫发布了新的文献求助10
3秒前
111发布了新的文献求助10
3秒前
4秒前
winwin完成签到,获得积分10
4秒前
结实盼烟完成签到,获得积分10
5秒前
sunchengcehng发布了新的文献求助30
6秒前
Alinf完成签到,获得积分10
6秒前
6秒前
Alan完成签到,获得积分10
6秒前
7秒前
7秒前
Ava应助丰那个丰采纳,获得10
8秒前
田様应助停婷采纳,获得10
9秒前
9秒前
时尚的大碗完成签到,获得积分10
9秒前
rmhayze完成签到,获得积分10
9秒前
10秒前
EASA完成签到,获得积分10
10秒前
萤阳完成签到,获得积分10
10秒前
水木应助CC采纳,获得10
11秒前
ljys发布了新的文献求助10
11秒前
匿名发布了新的文献求助30
11秒前
xx完成签到,获得积分10
12秒前
卫卫完成签到 ,获得积分10
12秒前
木悠发布了新的文献求助10
12秒前
leodu发布了新的文献求助10
13秒前
Ann完成签到,获得积分10
13秒前
13秒前
hzh完成签到 ,获得积分10
13秒前
科研通AI2S应助ly采纳,获得10
13秒前
丘比特应助高新慧采纳,获得10
14秒前
杪秋三十完成签到,获得积分10
14秒前
caixiayin发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653