Spatiotemporal Fusion Transformer for large-scale traffic forecasting

计算机科学 变压器 比例(比率) 融合 人工智能 数据挖掘 地图学 电气工程 地理 工程类 语言学 哲学 电压
作者
Zhenghong Wang,Yi Wang,Furong Jia,Fan Zhang,Nikita Klimenko,Leye Wang,Zhengbing He,Zhou Huang,Yu Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:107: 102293-102293 被引量:5
标识
DOI:10.1016/j.inffus.2024.102293
摘要

The way humans travel and even their daily commute, is gradually expanding beyond the confines of counties and cities. Traffic between counties, cities, and even across the entire state is increasingly becoming a common aspect of daily activities. The demand for traffic flow forecasting covering larger geographical areas and longer time spans is ongoing. However, existing studies lack targeted deep model proposals for large-scale forecasting. To address this gap, we propose Spatiotemporal Fusion Transformer (STFT). Specifically, we propose three modules on top of the Transformer architecture: (i) Seasonality Encoding, based on the multi-periodicity inherent in traffic flow to facilitate the extraction of more predictable time-variant components from complex patterns. (ii) Tubelet Embedding, partitioning the input into Tubelets as input tokens for the Transformer. The Tubelet design not only achieves quadratic reductions in computational and memory usage but also enhances spatiotemporal locality feature modelling. (iii) Token Permutator, leveraging diffusion graph to model the spatiotemporal dynamics as a token permutation process. The graph representation is then projected by a proposed Hadamard Mapper to circumvent the anomaly sensitivities of Graph Neural Networks in large-scale computations. Experimental results on five real-world datasets indicate that STFT can cater to collaborative forecasting at diverse scales (subdivision, county, municipal, state) that not only outperforms state-of-the-art methods but also enjoys a large speedup of up to 4.46×. Lastly, we also find that compared to independent forecasting for each subregion, large-scale collaborative forecasting with STFT offers both better feature utilization and requires less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助大方百招采纳,获得10
刚刚
深情安青应助热情的乐菱采纳,获得10
刚刚
零度寂寞3166完成签到,获得积分10
1秒前
dildil发布了新的文献求助10
2秒前
咩咩咩完成签到 ,获得积分10
2秒前
2秒前
2秒前
kuui发布了新的文献求助10
3秒前
eiland发布了新的文献求助10
3秒前
小点点发布了新的文献求助10
4秒前
白翊辰完成签到,获得积分10
4秒前
小蘑菇应助as采纳,获得10
4秒前
6秒前
6秒前
6秒前
想法高峰发布了新的文献求助10
6秒前
asdfj应助崔哥采纳,获得10
7秒前
儒雅沛蓝完成签到,获得积分10
7秒前
白翊辰发布了新的文献求助10
7秒前
7秒前
lakiliu应助chaserlife采纳,获得10
7秒前
Huck完成签到,获得积分10
7秒前
酷波er应助张歌采纳,获得10
8秒前
9秒前
称心不尤发布了新的文献求助20
9秒前
科研野狗发布了新的文献求助10
10秒前
大大王完成签到,获得积分10
10秒前
10秒前
传奇3应助MingqingFang采纳,获得10
11秒前
Hello应助余光采纳,获得10
11秒前
淳于尔阳完成签到,获得积分10
11秒前
cc发布了新的文献求助10
11秒前
张佳明完成签到,获得积分10
11秒前
乐乐发布了新的文献求助50
12秒前
12秒前
大方百招发布了新的文献求助10
12秒前
14秒前
Wen发布了新的文献求助10
15秒前
SciGPT应助zhaochenyu采纳,获得30
16秒前
想法高峰完成签到,获得积分20
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170414
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935308
捐赠科研通 2481980
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608