Spatiotemporal Fusion Transformer for large-scale traffic forecasting

计算机科学 变压器 比例(比率) 融合 人工智能 数据挖掘 地图学 电气工程 地理 工程类 语言学 哲学 电压
作者
Zhenghong Wang,Yi Wang,Furong Jia,Fan Zhang,Nikita Klimenko,Leye Wang,Zhengbing He,Zhou Huang,Yu Liu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:107: 102293-102293 被引量:12
标识
DOI:10.1016/j.inffus.2024.102293
摘要

The way humans travel and even their daily commute, is gradually expanding beyond the confines of counties and cities. Traffic between counties, cities, and even across the entire state is increasingly becoming a common aspect of daily activities. The demand for traffic flow forecasting covering larger geographical areas and longer time spans is ongoing. However, existing studies lack targeted deep model proposals for large-scale forecasting. To address this gap, we propose Spatiotemporal Fusion Transformer (STFT). Specifically, we propose three modules on top of the Transformer architecture: (i) Seasonality Encoding, based on the multi-periodicity inherent in traffic flow to facilitate the extraction of more predictable time-variant components from complex patterns. (ii) Tubelet Embedding, partitioning the input into Tubelets as input tokens for the Transformer. The Tubelet design not only achieves quadratic reductions in computational and memory usage but also enhances spatiotemporal locality feature modelling. (iii) Token Permutator, leveraging diffusion graph to model the spatiotemporal dynamics as a token permutation process. The graph representation is then projected by a proposed Hadamard Mapper to circumvent the anomaly sensitivities of Graph Neural Networks in large-scale computations. Experimental results on five real-world datasets indicate that STFT can cater to collaborative forecasting at diverse scales (subdivision, county, municipal, state) that not only outperforms state-of-the-art methods but also enjoys a large speedup of up to 4.46×. Lastly, we also find that compared to independent forecasting for each subregion, large-scale collaborative forecasting with STFT offers both better feature utilization and requires less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzhongtian123完成签到,获得积分10
刚刚
熊四是誰完成签到,获得积分10
刚刚
Owen应助研究生采纳,获得10
刚刚
狂野世立完成签到,获得积分10
1秒前
2秒前
Ye完成签到,获得积分10
3秒前
伊戈达拉一个大拉完成签到,获得积分10
3秒前
迷路的绿藻头完成签到 ,获得积分10
4秒前
4秒前
研友_LBaaX8发布了新的文献求助10
6秒前
不明生物完成签到,获得积分10
6秒前
9秒前
11关注了科研通微信公众号
10秒前
11秒前
橙子发布了新的文献求助20
12秒前
wanna完成签到,获得积分10
12秒前
赘婿应助研究生采纳,获得10
12秒前
畅快新之发布了新的文献求助20
14秒前
王慧颖发布了新的文献求助10
14秒前
玥月完成签到 ,获得积分10
15秒前
15秒前
852应助殷楷霖采纳,获得10
17秒前
久久发布了新的文献求助10
17秒前
LL666完成签到 ,获得积分10
18秒前
万能图书馆应助琥1采纳,获得10
19秒前
19秒前
asdfghjkl发布了新的文献求助10
19秒前
CodeCraft应助北陆小猫采纳,获得10
19秒前
aaaaa完成签到,获得积分10
21秒前
帕尼灬尼完成签到,获得积分10
22秒前
默客发布了新的文献求助10
23秒前
Singularity应助wyx采纳,获得10
23秒前
24秒前
24秒前
搜集达人应助研友_LBaaX8采纳,获得10
24秒前
阿甲发布了新的文献求助10
25秒前
如意枫叶发布了新的文献求助10
29秒前
30秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007