Spatiotemporal Fusion Transformer for large-scale traffic forecasting

计算机科学 变压器 比例(比率) 融合 人工智能 数据挖掘 地图学 电气工程 地理 工程类 语言学 哲学 电压
作者
Zhenghong Wang,Yi Wang,Furong Jia,Fan Zhang,Nikita Klimenko,Leye Wang,Zhengbing He,Zhou Huang,Yu Liu
出处
期刊:Information Fusion [Elsevier]
卷期号:107: 102293-102293 被引量:19
标识
DOI:10.1016/j.inffus.2024.102293
摘要

The way humans travel and even their daily commute, is gradually expanding beyond the confines of counties and cities. Traffic between counties, cities, and even across the entire state is increasingly becoming a common aspect of daily activities. The demand for traffic flow forecasting covering larger geographical areas and longer time spans is ongoing. However, existing studies lack targeted deep model proposals for large-scale forecasting. To address this gap, we propose Spatiotemporal Fusion Transformer (STFT). Specifically, we propose three modules on top of the Transformer architecture: (i) Seasonality Encoding, based on the multi-periodicity inherent in traffic flow to facilitate the extraction of more predictable time-variant components from complex patterns. (ii) Tubelet Embedding, partitioning the input into Tubelets as input tokens for the Transformer. The Tubelet design not only achieves quadratic reductions in computational and memory usage but also enhances spatiotemporal locality feature modelling. (iii) Token Permutator, leveraging diffusion graph to model the spatiotemporal dynamics as a token permutation process. The graph representation is then projected by a proposed Hadamard Mapper to circumvent the anomaly sensitivities of Graph Neural Networks in large-scale computations. Experimental results on five real-world datasets indicate that STFT can cater to collaborative forecasting at diverse scales (subdivision, county, municipal, state) that not only outperforms state-of-the-art methods but also enjoys a large speedup of up to 4.46×. Lastly, we also find that compared to independent forecasting for each subregion, large-scale collaborative forecasting with STFT offers both better feature utilization and requires less computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
小二郎应助小懒猪采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
刚刚
eghiefefe发布了新的文献求助10
1秒前
hehe完成签到 ,获得积分10
1秒前
哈哈是你发布了新的文献求助10
1秒前
1秒前
tx完成签到 ,获得积分20
1秒前
2秒前
海棠听风发布了新的文献求助10
2秒前
3秒前
lucky发布了新的文献求助10
3秒前
MARY发布了新的文献求助10
3秒前
caijinwang完成签到,获得积分20
4秒前
独步天下完成签到,获得积分10
4秒前
斯文败类应助Blank采纳,获得10
4秒前
PHI关闭了PHI文献求助
4秒前
香蕉觅云应助叶成会采纳,获得10
4秒前
完美世界应助一二三四五采纳,获得10
4秒前
邴捷完成签到,获得积分10
4秒前
lll完成签到,获得积分10
4秒前
系统提示完成签到,获得积分10
4秒前
Zx_1993应助龙藏在云里采纳,获得10
4秒前
4秒前
Paranoid发布了新的文献求助10
4秒前
化学小白发布了新的文献求助10
4秒前
5秒前
虚拟的含灵完成签到,获得积分10
5秒前
晚安完成签到 ,获得积分10
6秒前
li关闭了li文献求助
6秒前
kqd发布了新的文献求助10
6秒前
6秒前
Alex发布了新的文献求助10
6秒前
ZWL发布了新的文献求助10
7秒前
加百莉发布了新的文献求助10
7秒前
斯文败类应助快乐友灵采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668