Performance Evaluation of Metal–Organic Frameworks in Adsorption Heat Pumps via Multiscale Modeling

金属有机骨架 吸附 多尺度建模 材料科学 工艺工程 化学工程 化学 有机化学 工程类 计算化学
作者
Tiangui Liang,Wei Li,Song Li,Zhiliang Cai,Yuanchuang Lin,Weixiong Wu
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (7): 2825-2840
标识
DOI:10.1021/acssuschemeng.3c07884
摘要

The adsorption heat pump (AHP) driven by low-grade thermal energy is a promising technology to reduce building energy consumption for sustainable energy. Using metal–organic frameworks (MOFs) as adsorbents has attracted widespread attention in AHPs due to their large capacity of working fluids, a stepwise adsorption isotherm that tends to possess outstanding equilibrium performance (i.e., coefficient of performance, COP). Nevertheless, the dynamic performance of MOFs in AHPs lacks a quick evaluation and screening strategy, especially for specific cooling power (SCP) that is equally important with COP during operation. Herein, multiscale modeling combining the molecular simulation and the mathematical simulation of AHPs was proposed to obtain the SCP and COP for a vast number of MOF-based working pairs with high efficiency. Structure–property relationship obtained from the high-throughput computational screening of 1072 MOFs indicated that relatively low density (<1 kg/m3), large pore size (>10 Å), and a relatively high void fraction (∼0.6) benefited the improvement of working capacity (ΔW), leading to high performance eventually. From a dynamic perspective, it was also suggested that the adsorption/desorption of working fluids majorly occurring in the temperature ranges of 305–325 and 330–345 K was favorable for the MOFs to achieve better SCP and COP. Furthermore, the successful implementation of several commonly used machine learning (ML) algorithms paves the way for accelerating the assessment of the dynamic performance for nanoporous materials with reasonable computation time. During the training of ML algorithms, it was revealed that ΔW and transport diffusion were the dominant descriptors for predicting SCP, while equilibrium adsorption performance and MOF density played a vital role in predicting COP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwl发布了新的文献求助10
1秒前
科研虫发布了新的文献求助10
2秒前
2秒前
11发布了新的文献求助10
2秒前
小彻发布了新的文献求助10
3秒前
香蕉觅云应助等待书雪采纳,获得10
3秒前
羽6发布了新的文献求助10
5秒前
传奇3应助榴下晨光采纳,获得10
6秒前
李健应助wkwkkwk采纳,获得10
7秒前
研友_VZG7GZ应助自觉的山河采纳,获得10
7秒前
at关注了科研通微信公众号
8秒前
复杂念梦发布了新的文献求助10
8秒前
momo完成签到 ,获得积分10
9秒前
小彻完成签到,获得积分10
9秒前
顶顶小明完成签到,获得积分10
11秒前
研友_VZG7GZ应助辣椒面采纳,获得10
11秒前
史道夫发布了新的文献求助10
11秒前
小魏完成签到 ,获得积分10
12秒前
13秒前
fire_tu发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
18秒前
gaochunjing发布了新的文献求助10
19秒前
wkwkkwk发布了新的文献求助10
20秒前
21秒前
榴下晨光发布了新的文献求助10
21秒前
21秒前
22秒前
caq发布了新的文献求助10
23秒前
SpongeBob发布了新的文献求助10
23秒前
23秒前
fifteen发布了新的文献求助10
24秒前
正经科研人完成签到,获得积分20
24秒前
七里香完成签到,获得积分10
25秒前
26秒前
田様应助热情诗云采纳,获得10
26秒前
Jasper应助Felix采纳,获得10
27秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153522
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861275
捐赠科研通 2462658
什么是DOI,文献DOI怎么找? 1310909
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809