DynAMICS: A Tool-Based Method for the Specification and Dynamic Detection of Android Behavioral Code Smells

代码气味 计算机科学 Android(操作系统) 源代码 软件 编码(集合论) 软件质量 程序设计语言 人工智能 软件工程 软件开发 操作系统 集合(抽象数据类型)
作者
Dimitri Prestat,Naouel Moha,Roger Villemaire,Florent Avellaneda
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:50 (4): 765-784 被引量:1
标识
DOI:10.1109/tse.2024.3363223
摘要

Code smells are the result of poor design choices within software systems that complexify source code and impede evolution and performance. Therefore, detecting code smells within software systems is an important priority to decrease technical debt. Furthermore, the emergence of mobile applications (apps) has brought new types of Android-specific code smells, which relate to limitations and constraints on resources like memory, performance and energy consumption. Among these Android-specific smells are those that describe inappropriate behaviour during the execution that may negatively impact software quality. Static analysis tools, however, show limitations for detecting these behavioural code smells and properly detecting behavioural code smells requires considering the dynamic behaviour of the apps. To dynamically detect behavioural code smells, we hence propose three contributions : (1) A method, the D ynamics method, a step-by-step method for the specification and dynamic detection of Android behavioural code smells; (2) A tool, the D ynamics tool, implementing this method on seven code smells; and (3) A validation of our approach on 538 apps from F-D roid with a comparison with the static analysis detection tools, a D octor and P aprika , from the literature. Our method consists of four steps: (1) the specification of the code smells, (2) the instrumentation of the app, (3) the execution of the apps, and (4) the detection of the behavioural code smells. Our results show that many instances of code smells that cannot be detected with static detection tools are indeed detected with our dynamic approach with an average precision of 92.8% and an average recall of 53.4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清璃完成签到 ,获得积分10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
天天快乐应助暴富小羊采纳,获得10
2秒前
羊羊完成签到 ,获得积分10
2秒前
BKP完成签到,获得积分10
3秒前
4秒前
4秒前
土豆丝P完成签到,获得积分10
4秒前
Mathilda发布了新的文献求助10
6秒前
BKP发布了新的文献求助10
6秒前
emm发布了新的文献求助10
7秒前
yu完成签到,获得积分10
7秒前
哇哇脸完成签到,获得积分10
8秒前
9秒前
11秒前
Yuying完成签到 ,获得积分10
11秒前
Rita发布了新的文献求助10
11秒前
wmemrnrnr发布了新的文献求助30
12秒前
14秒前
wy.he应助野猪亨利28采纳,获得30
14秒前
NexusExplorer应助露露采纳,获得10
15秒前
15秒前
15秒前
暴富小羊发布了新的文献求助10
16秒前
毛毛完成签到,获得积分10
17秒前
18秒前
20秒前
21秒前
啦啦啦完成签到,获得积分10
24秒前
25秒前
xinxin发布了新的文献求助10
25秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323