Flex-DLD: Deep Low-rank Decomposition Model with Flexible Priors for Hyperspectral Image Denoising and Restoration

高光谱成像 人工智能 降噪 先验概率 计算机科学 模式识别(心理学) 噪音(视频) 图像(数学) 机器学习 贝叶斯概率
作者
Yurong Chen,Hui Zhang,Yaonan Wang,Yimin Yang,Q. M. Jonathan Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tip.2024.3360902
摘要

Hyperspectral images (HSIs) are composed of hundreds of contiguous waveband images, offering a wealth of spatial and spectral information. However, the practical use of HSIs is often hindered by the presence of complicated noise caused by various factors such as non-uniform sensor response and dark current. Traditional methods for denoising HSIs rely on constrained optimization approaches, where selecting appropriate prior knowledge is critical for achieving satisfactory results. Nevertheless, these traditional algorithms are limited by hand-crafted priors, leaving room for improvement in their denoising performance. Recently, the supervised deep learning technique has emerged as a promising approach for HSI denoising. However, their requirement for paired training data and poor generalization ability on untrained noise distributions pose challenges in practical applications. In this paper, we design a novel algorithm by the synergism of optimization-based methods and deep learning techniques. Specifically, we introduce a plug-and-play Deep Low-rank Decomposition (DLD) model into the optimization framework. Furthermore, we propose an effective mechanism to incorporate traditional prior knowledge into the DLD model. Finally, we provide a detailed analysis of the optimization process and convergence of the proposed method. Empirical evaluations on various tasks, including hyperspectral image denoising and spectral compressive imaging, demonstrate the superiority of our approach over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
华仔应助Catalina采纳,获得10
2秒前
科目三应助Sherling采纳,获得10
2秒前
魏阳虹完成签到 ,获得积分10
7秒前
7秒前
luoyulin完成签到,获得积分10
7秒前
7秒前
8秒前
自然的听寒完成签到 ,获得积分10
10秒前
昂莫达完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助冷静的煎饼采纳,获得10
12秒前
wwwteng呀完成签到,获得积分10
12秒前
王闪闪发布了新的文献求助10
13秒前
梅子完成签到 ,获得积分10
13秒前
薛wen晶完成签到 ,获得积分10
13秒前
英俊的铭应助123456787899采纳,获得10
13秒前
14秒前
李健应助生椰拿铁采纳,获得10
14秒前
MiYinZzz发布了新的文献求助10
14秒前
Master发布了新的文献求助10
15秒前
要没时间了完成签到,获得积分20
15秒前
zm完成签到 ,获得积分10
17秒前
繁星发布了新的文献求助10
18秒前
18秒前
22秒前
不胜玖完成签到,获得积分10
23秒前
27秒前
fangjc1024发布了新的文献求助10
28秒前
30秒前
生椰拿铁发布了新的文献求助10
30秒前
Master完成签到,获得积分10
32秒前
33秒前
现代柠檬完成签到,获得积分20
34秒前
天天快乐应助fangjc1024采纳,获得10
34秒前
34秒前
35秒前
科研通AI2S应助风雪丽人采纳,获得30
35秒前
amy发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147980
求助须知:如何正确求助?哪些是违规求助? 2798977
关于积分的说明 7833117
捐赠科研通 2456104
什么是DOI,文献DOI怎么找? 1307127
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620