Flex-DLD: Deep Low-Rank Decomposition Model With Flexible Priors for Hyperspectral Image Denoising and Restoration

高光谱成像 人工智能 降噪 先验概率 计算机科学 模式识别(心理学) 噪音(视频) 图像(数学) 机器学习 贝叶斯概率
作者
Yurong Chen,Hui Zhang,Yaonan Wang,Yimin Yang,Q. M. Jonathan Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1211-1226 被引量:8
标识
DOI:10.1109/tip.2024.3360902
摘要

Hyperspectral images (HSIs) are composed of hundreds of contiguous waveband images, offering a wealth of spatial and spectral information. However, the practical use of HSIs is often hindered by the presence of complicated noise caused by various factors such as non-uniform sensor response and dark current. Traditional methods for denoising HSIs rely on constrained optimization approaches, where selecting appropriate prior knowledge is critical for achieving satisfactory results. Nevertheless, these traditional algorithms are limited by hand-crafted priors, leaving room for improvement in their denoising performance. Recently, the supervised deep learning technique has emerged as a promising approach for HSI denoising. However, their requirement for paired training data and poor generalization ability on untrained noise distributions pose challenges in practical applications. In this paper, we design a novel algorithm by the synergism of optimization-based methods and deep learning techniques. Specifically, we introduce a plug-and-play Deep Low-rank Decomposition (DLD) model into the optimization framework. Furthermore, we propose an effective mechanism to incorporate traditional prior knowledge into the DLD model. Finally, we provide a detailed analysis of the optimization process and convergence of the proposed method. Empirical evaluations on various tasks, including hyperspectral image denoising and spectral compressive imaging, demonstrate the superiority of our approach over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐百褶裙完成签到 ,获得积分10
1秒前
科目三应助飞快的笑白采纳,获得10
1秒前
万能图书馆应助热情铭采纳,获得10
1秒前
贝贝完成签到,获得积分10
1秒前
yxl01yxl完成签到,获得积分10
1秒前
2秒前
HughWang完成签到,获得积分10
2秒前
2秒前
Sun发布了新的文献求助50
2秒前
戚越完成签到,获得积分10
3秒前
3秒前
wry完成签到,获得积分10
3秒前
明亮大叔完成签到,获得积分10
4秒前
pebble完成签到,获得积分10
4秒前
Lin发布了新的文献求助30
4秒前
seven完成签到,获得积分10
4秒前
称心花生发布了新的文献求助10
5秒前
爱吃冻梨完成签到,获得积分10
5秒前
陆小齐完成签到,获得积分10
5秒前
5秒前
李爱国应助xiaoblue采纳,获得10
6秒前
独特的忆彤完成签到 ,获得积分10
6秒前
Kuta完成签到,获得积分10
6秒前
KKKK发布了新的文献求助10
6秒前
随性完成签到,获得积分10
7秒前
嗯嗯完成签到 ,获得积分10
7秒前
7秒前
咖可乐完成签到,获得积分10
8秒前
乔烨磊发布了新的文献求助10
8秒前
8秒前
搜集达人应助WFG采纳,获得10
8秒前
xixi发布了新的文献求助10
8秒前
卡卡发布了新的文献求助10
8秒前
阿铭完成签到 ,获得积分10
9秒前
侠医2012完成签到,获得积分0
9秒前
Ammon完成签到,获得积分10
9秒前
香蕉觅云应助哇哇的采纳,获得10
10秒前
舒克发布了新的文献求助10
10秒前
好了发布了新的文献求助10
10秒前
英俊的高跟鞋完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874