Flex-DLD: Deep Low-Rank Decomposition Model With Flexible Priors for Hyperspectral Image Denoising and Restoration

高光谱成像 人工智能 降噪 先验概率 计算机科学 模式识别(心理学) 噪音(视频) 图像(数学) 机器学习 贝叶斯概率
作者
Yurong Chen,Hui Zhang,Yaonan Wang,Yimin Yang,Q. M. Jonathan Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1211-1226 被引量:29
标识
DOI:10.1109/tip.2024.3360902
摘要

Hyperspectral images (HSIs) are composed of hundreds of contiguous waveband images, offering a wealth of spatial and spectral information. However, the practical use of HSIs is often hindered by the presence of complicated noise caused by various factors such as non-uniform sensor response and dark current. Traditional methods for denoising HSIs rely on constrained optimization approaches, where selecting appropriate prior knowledge is critical for achieving satisfactory results. Nevertheless, these traditional algorithms are limited by hand-crafted priors, leaving room for improvement in their denoising performance. Recently, the supervised deep learning technique has emerged as a promising approach for HSI denoising. However, their requirement for paired training data and poor generalization ability on untrained noise distributions pose challenges in practical applications. In this paper, we design a novel algorithm by the synergism of optimization-based methods and deep learning techniques. Specifically, we introduce a plug-and-play Deep Low-rank Decomposition (DLD) model into the optimization framework. Furthermore, we propose an effective mechanism to incorporate traditional prior knowledge into the DLD model. Finally, we provide a detailed analysis of the optimization process and convergence of the proposed method. Empirical evaluations on various tasks, including hyperspectral image denoising and spectral compressive imaging, demonstrate the superiority of our approach over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hql_sdu发布了新的文献求助10
刚刚
Reda关注了科研通微信公众号
刚刚
刚刚
1秒前
大模型应助hanleiharry1采纳,获得10
1秒前
酷波er应助wangpl1607采纳,获得10
1秒前
Vermouth完成签到,获得积分10
1秒前
马畅发布了新的文献求助30
1秒前
张志超发布了新的文献求助10
2秒前
快乐翎发布了新的文献求助10
2秒前
mm发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
凌墨墨发布了新的文献求助10
3秒前
香蕉觅云应助怂怂鼠采纳,获得10
4秒前
tianqiang发布了新的文献求助10
5秒前
吴雨茜完成签到 ,获得积分10
5秒前
lanyun00123完成签到,获得积分10
5秒前
5秒前
下雨天睡个懒觉完成签到,获得积分10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
planet应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
ljy应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
yznfly应助Joan采纳,获得20
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
未央应助科研通管家采纳,获得10
7秒前
planet应助科研通管家采纳,获得10
7秒前
易点邦应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
打打应助lxt819采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663371
求助须知:如何正确求助?哪些是违规求助? 4849055
关于积分的说明 15103646
捐赠科研通 4821662
什么是DOI,文献DOI怎么找? 2580844
邀请新用户注册赠送积分活动 1535043
关于科研通互助平台的介绍 1493426