An Enhanced Vehicle Trajectory Prediction Model Leveraging LSTM and Social-Attention Mechanisms

联营 弹道 计算机科学 人工智能 循环神经网络 机器学习 卷积神经网络 图层(电子) 机制(生物学) 序列(生物学) 人工神经网络 哲学 化学 物理 有机化学 认识论 天文 生物 遗传学
作者
Senyao Qiao,Fei Gao,Jianghang Wu,Rui Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 1718-1726 被引量:2
标识
DOI:10.1109/access.2023.3345643
摘要

Accurate trajectory prediction for multiple vehicles in complex social interaction environments is essential for ensuring the safety of autonomous vehicles and improving the quality of their planning and control.The social interactions between vehicles significantly influence their future trajectories.However, traditional trajectory prediction models based on Recurrent Neural Networks (RNN) or Convolutional Neural Networks (CNN) often overlook or simplify these interactions.Although these models may exhibit high performance in short-term predictions, they fail to achieve high prediction accuracy in scenarios with long-term dynamic interactions.To address this limitation, we propose a Social-Attention Long Short-Term Memory (LSTM) model which predicts the future trajectories of neighboring vehicles and achieves increased accuracy.Our proposed model employs a Social-Pooling layer to effectively capture cooperative behaviors and mutual influences between vehicles.Additionally, we incorporate a self-attention mechanism to weight the inputs and outputs of the Social-Pooling layer, which is significant for assessing the influence between vehicles in different positions.This combination allows our model to take into consideration both the dependencies within the sequence and the social relationships between vehicles, providing a more comprehensive scene understanding.The efficacy of our model is tested on two real-world freeway trajectory datasets, namely NGSIM and HighD.Our model surpasses various baseline methods, exhibiting exceptional accuracy in both prediction and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
1秒前
bxw发布了新的文献求助10
1秒前
猛猛读文献的胖子完成签到,获得积分10
1秒前
学术laji发布了新的文献求助10
2秒前
jovrtic完成签到,获得积分10
2秒前
我是老大应助SyncMaster采纳,获得10
4秒前
5秒前
5秒前
无名老大应助多情曼凝采纳,获得200
6秒前
9秒前
瓜呱完成签到 ,获得积分10
10秒前
xx完成签到 ,获得积分10
11秒前
liyuchen完成签到,获得积分10
11秒前
kangkang发布了新的文献求助10
11秒前
11秒前
12秒前
坦率的棉花糖完成签到,获得积分10
13秒前
HY完成签到,获得积分10
14秒前
Jasper应助羽宇采纳,获得10
14秒前
yxq完成签到 ,获得积分10
15秒前
杜华詹发布了新的文献求助10
17秒前
背后曼雁发布了新的文献求助10
17秒前
科目三应助鬼才之眼采纳,获得10
19秒前
20秒前
21秒前
21秒前
执着的以晴完成签到,获得积分10
21秒前
22秒前
swallow完成签到,获得积分10
23秒前
Ava应助bxw采纳,获得10
24秒前
杨秋月发布了新的文献求助10
24秒前
gzw发布了新的文献求助10
25秒前
26秒前
Dreamer发布了新的文献求助30
27秒前
wind完成签到,获得积分10
28秒前
英俊的铭应助guozizi采纳,获得30
30秒前
彩色半烟完成签到,获得积分10
31秒前
31秒前
32秒前
LDDD发布了新的文献求助10
32秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464222
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057512
捐赠科研通 2747626
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696070