亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end deep learning method for predicting hormonal treatment response in women with atypical endometrial hyperplasia or endometrial cancer

医学 人工智能 自编码 深度学习 恶性肿瘤 试验装置 非典型增生 激素疗法 机器学习 放射科 增生 癌症 内科学 乳腺癌 计算机科学
作者
Seyed Mostafa Mousavi Kahaki,Ian S. Hagemann,H. Kenny,Christopher Trindade,Nicholas Petrick,Nicolas Kostelecky,Lindsay E. Borden,Doaa Atwi,Kar‐Ming Fung,Weijie Chen
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (01) 被引量:1
标识
DOI:10.1117/1.jmi.11.1.017502
摘要

PurposeEndometrial cancer (EC) is the most common gynecologic malignancy in the United States, and atypical endometrial hyperplasia (AEH) is considered a high-risk precursor to EC. Hormone therapies and hysterectomy are practical treatment options for AEH and early-stage EC. Some patients prefer hormone therapies for reasons such as fertility preservation or being poor surgical candidates. However, accurate prediction of an individual patient's response to hormonal treatment would allow for personalized and potentially improved recommendations for these conditions. This study aims to explore the feasibility of using deep learning models on whole slide images (WSI) of endometrial tissue samples to predict the patient's response to hormonal treatment.ApproachWe curated a clinical WSI dataset of 112 patients from two clinical sites. An expert pathologist annotated these images by outlining AEH/EC regions. We developed an end-to-end machine learning model with mixed supervision. The model is based on image patches extracted from pathologist-annotated AEH/EC regions. Either an unsupervised deep learning architecture (Autoencoder or ResNet50), or non-deep learning (radiomics feature extraction) is used to embed the images into a low-dimensional space, followed by fully connected layers for binary prediction, which was trained with binary responder/non-responder labels established by pathologists. We used stratified sampling to partition the dataset into a development set and a test set for internal validation of the performance of our models.ResultsThe autoencoder model yielded an AUROC of 0.80 with 95% CI [0.63, 0.95] on the independent test set for the task of predicting a patient with AEH/EC as a responder vs non-responder to hormonal treatment.ConclusionsThese findings demonstrate the potential of using mixed supervised machine learning models on WSIs for predicting the response to hormonal treatment in AEH/EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wdw2236完成签到 ,获得积分10
2秒前
YU完成签到,获得积分10
3秒前
Xiaowen完成签到 ,获得积分10
6秒前
YU发布了新的文献求助10
8秒前
13秒前
pay发布了新的文献求助10
17秒前
18秒前
Jasper应助石榴汁的书采纳,获得10
21秒前
步行者发布了新的文献求助10
40秒前
41秒前
隐形曼青应助111采纳,获得10
41秒前
41秒前
newmoon完成签到 ,获得积分10
43秒前
柳柳发布了新的文献求助10
50秒前
54秒前
张涛完成签到 ,获得积分10
55秒前
111完成签到,获得积分20
56秒前
57秒前
1分钟前
1分钟前
聪慧语风发布了新的文献求助10
1分钟前
1分钟前
Orange应助柳柳采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
聪慧语风完成签到,获得积分10
1分钟前
牛油果战士完成签到,获得积分10
1分钟前
善学以致用应助Harrison采纳,获得10
1分钟前
陶醉的烤鸡完成签到 ,获得积分10
1分钟前
桐桐应助sh采纳,获得10
1分钟前
1分钟前
lmk完成签到 ,获得积分10
1分钟前
sh发布了新的文献求助10
1分钟前
1分钟前
华仔应助大树采纳,获得10
1分钟前
养乐多敬你完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754802
求助须知:如何正确求助?哪些是违规求助? 5489736
关于积分的说明 15380642
捐赠科研通 4893273
什么是DOI,文献DOI怎么找? 2631842
邀请新用户注册赠送积分活动 1579771
关于科研通互助平台的介绍 1535564