End-to-end deep learning method for predicting hormonal treatment response in women with atypical endometrial hyperplasia or endometrial cancer

医学 人工智能 自编码 深度学习 恶性肿瘤 试验装置 非典型增生 激素疗法 机器学习 放射科 增生 癌症 内科学 乳腺癌 计算机科学
作者
Seyed Mostafa Mousavi Kahaki,Ian S. Hagemann,H. Kenny,Christopher Trindade,Nicholas Petrick,Nicolas Kostelecky,Lindsay E. Borden,Doaa Atwi,Kar‐Ming Fung,Weijie Chen
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (01)
标识
DOI:10.1117/1.jmi.11.1.017502
摘要

PurposeEndometrial cancer (EC) is the most common gynecologic malignancy in the United States, and atypical endometrial hyperplasia (AEH) is considered a high-risk precursor to EC. Hormone therapies and hysterectomy are practical treatment options for AEH and early-stage EC. Some patients prefer hormone therapies for reasons such as fertility preservation or being poor surgical candidates. However, accurate prediction of an individual patient’s response to hormonal treatment would allow for personalized and potentially improved recommendations for these conditions. This study aims to explore the feasibility of using deep learning models on whole slide images (WSI) of endometrial tissue samples to predict the patient’s response to hormonal treatment.ApproachWe curated a clinical WSI dataset of 112 patients from two clinical sites. An expert pathologist annotated these images by outlining AEH/EC regions. We developed an end-to-end machine learning model with mixed supervision. The model is based on image patches extracted from pathologist-annotated AEH/EC regions. Either an unsupervised deep learning architecture (Autoencoder or ResNet50), or non-deep learning (radiomics feature extraction) is used to embed the images into a low-dimensional space, followed by fully connected layers for binary prediction, which was trained with binary responder/non-responder labels established by pathologists. We used stratified sampling to partition the dataset into a development set and a test set for internal validation of the performance of our models.ResultsThe autoencoder model yielded an AUROC of 0.80 with 95% CI [0.63, 0.95] on the independent test set for the task of predicting a patient with AEH/EC as a responder vs non-responder to hormonal treatment.ConclusionsThese findings demonstrate the potential of using mixed supervised machine learning models on WSIs for predicting the response to hormonal treatment in AEH/EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yziii举报有机民工求助涉嫌违规
1秒前
Joy发布了新的文献求助10
1秒前
1秒前
wobuxin发布了新的文献求助10
1秒前
橘子sungua完成签到,获得积分10
2秒前
3秒前
36456657应助Lynn采纳,获得10
3秒前
忧郁鸿煊完成签到,获得积分10
3秒前
3秒前
zxz关闭了zxz文献求助
4秒前
一颗白菜完成签到,获得积分10
4秒前
在水一方应助超级幻然采纳,获得10
4秒前
4秒前
善学以致用应助阜睿采纳,获得10
4秒前
5秒前
5秒前
bkagyin应助郝宝真采纳,获得10
5秒前
6秒前
Ava应助yu采纳,获得10
6秒前
lx6869完成签到,获得积分10
6秒前
搜集达人应助mjlv采纳,获得10
7秒前
7秒前
逸晨发布了新的文献求助30
7秒前
希望天下0贩的0应助111采纳,获得10
8秒前
8秒前
嘉木完成签到 ,获得积分10
8秒前
大橙子应助会笑的猪猪猫采纳,获得10
8秒前
MeSs发布了新的文献求助10
8秒前
小小发布了新的文献求助10
8秒前
彭于晏应助温柔诗柳采纳,获得10
8秒前
8秒前
科研通AI2S应助Michelle采纳,获得10
9秒前
dxwy应助122采纳,获得10
9秒前
10秒前
善学以致用应助changyee采纳,获得10
10秒前
11秒前
追寻紫安发布了新的文献求助10
11秒前
12秒前
哈哈哈哈发布了新的文献求助20
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432