亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

End-to-end deep learning method for predicting hormonal treatment response in women with atypical endometrial hyperplasia or endometrial cancer

医学 人工智能 自编码 深度学习 恶性肿瘤 试验装置 非典型增生 激素疗法 机器学习 放射科 增生 癌症 内科学 乳腺癌 计算机科学
作者
Seyed Mostafa Mousavi Kahaki,Ian S. Hagemann,H. Kenny,Christopher Trindade,Nicholas Petrick,Nicolas Kostelecky,Lindsay E. Borden,Doaa Atwi,Kar‐Ming Fung,Weijie Chen
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:11 (01) 被引量:1
标识
DOI:10.1117/1.jmi.11.1.017502
摘要

PurposeEndometrial cancer (EC) is the most common gynecologic malignancy in the United States, and atypical endometrial hyperplasia (AEH) is considered a high-risk precursor to EC. Hormone therapies and hysterectomy are practical treatment options for AEH and early-stage EC. Some patients prefer hormone therapies for reasons such as fertility preservation or being poor surgical candidates. However, accurate prediction of an individual patient's response to hormonal treatment would allow for personalized and potentially improved recommendations for these conditions. This study aims to explore the feasibility of using deep learning models on whole slide images (WSI) of endometrial tissue samples to predict the patient's response to hormonal treatment.ApproachWe curated a clinical WSI dataset of 112 patients from two clinical sites. An expert pathologist annotated these images by outlining AEH/EC regions. We developed an end-to-end machine learning model with mixed supervision. The model is based on image patches extracted from pathologist-annotated AEH/EC regions. Either an unsupervised deep learning architecture (Autoencoder or ResNet50), or non-deep learning (radiomics feature extraction) is used to embed the images into a low-dimensional space, followed by fully connected layers for binary prediction, which was trained with binary responder/non-responder labels established by pathologists. We used stratified sampling to partition the dataset into a development set and a test set for internal validation of the performance of our models.ResultsThe autoencoder model yielded an AUROC of 0.80 with 95% CI [0.63, 0.95] on the independent test set for the task of predicting a patient with AEH/EC as a responder vs non-responder to hormonal treatment.ConclusionsThese findings demonstrate the potential of using mixed supervised machine learning models on WSIs for predicting the response to hormonal treatment in AEH/EC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ocseek完成签到 ,获得积分10
2秒前
10秒前
15秒前
墨痕发布了新的文献求助10
16秒前
19秒前
鳗鱼柚子完成签到 ,获得积分10
24秒前
NEKO完成签到,获得积分10
28秒前
坚守完成签到 ,获得积分10
30秒前
Atticus完成签到,获得积分10
31秒前
lezbj99完成签到,获得积分10
36秒前
赤恩应助tuanheqi采纳,获得20
38秒前
Criminology34应助科研通管家采纳,获得10
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
40秒前
Criminology34应助科研通管家采纳,获得10
40秒前
TXZ06完成签到,获得积分10
1分钟前
SciGPT应助wy采纳,获得10
1分钟前
Loney完成签到 ,获得积分10
1分钟前
1分钟前
威武灵阳完成签到,获得积分10
1分钟前
wy发布了新的文献求助10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
咎不可完成签到,获得积分10
1分钟前
NexusExplorer应助斯可采纳,获得10
1分钟前
jjx1005完成签到 ,获得积分10
2分钟前
知弈否发布了新的文献求助10
2分钟前
脱锦涛完成签到 ,获得积分10
2分钟前
flyinthesky完成签到,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
2分钟前
lige完成签到 ,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
斯可完成签到,获得积分10
2分钟前
2分钟前
Hello应助迷你的醉薇采纳,获得10
2分钟前
斯可发布了新的文献求助10
2分钟前
张晓祁完成签到,获得积分10
2分钟前
Hello应助俏皮芷蕊采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568162
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701881
捐赠科研通 4594488
什么是DOI,文献DOI怎么找? 2521010
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696