已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accelerated design of low-frequency broadband sound absorber with deep learning approach

宽带 声学 谐振器 稳健性(进化) 自编码 人工神经网络 计算机科学 反向 电子工程 概率逻辑 工程类 电信 人工智能 物理 电气工程 数学 生物化学 化学 几何学 基因
作者
Zhenqian Xiao,Penglin Gao,Dongwei Wang,Xiao Yong He,Yegao Qu,Linzhi Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:211: 111228-111228 被引量:5
标识
DOI:10.1016/j.ymssp.2024.111228
摘要

Broadband sound absorption has been a long-lasting concern in the field of noise engineering, yet to date remains challenging to cover a broad low-frequency range with ultra-thin materials of a few centimeters. A practicable approach is using coherently coupled resonators to constitute a compact coplanar metasurface absorber. However, this scheme leads to a tough inverse problem posed by the large number of design parameters since all have to be meticulously tuned to satisfy the critical coupling condition. We tackle this problem with the deep learning approach. An autoencoder-like neural network is built that, once maturely trained, significantly promote the inverse design process thanks to the highly efficient data-driven-based forward and inverse predictions. In the design, we have added a probabilistic model into the neural network to enhance its robustness for the normally ill-posed inverse design problems which require artificial and probably unreal spectrum as an input. This probabilistic network is capable of providing multiple ultra-thin (32 mm) and broadband metasurface designs. The optimized designs have been numerically and experimentally verified, showing the capacity of using solely nine resonators to achieve quasi-perfect sound absorption (absorption coefficient α⩾0.9) in a band from 350 to 530 Hz. Our work is helpful to accelerate the design of metasurface absorbers targeted especially for broadband noise control at low frequencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC应助花花采纳,获得30
1秒前
3秒前
不配.应助乔夜白采纳,获得10
3秒前
ding应助cruise采纳,获得10
4秒前
6秒前
舒心迎夏完成签到 ,获得积分10
7秒前
7秒前
8秒前
汉堡包应助天真的皓轩采纳,获得10
8秒前
9秒前
泥巴发布了新的文献求助10
11秒前
orixero应助yy超爱看文献采纳,获得10
11秒前
12秒前
13秒前
Clark完成签到 ,获得积分10
15秒前
yelide发布了新的文献求助10
15秒前
iMoney完成签到 ,获得积分10
15秒前
wyyyyyyyt完成签到,获得积分10
16秒前
薄荷梨应助蓝天采纳,获得10
16秒前
16秒前
daisyyy完成签到 ,获得积分10
16秒前
cruise发布了新的文献求助10
16秒前
buno应助吕培森采纳,获得10
19秒前
19秒前
witty完成签到,获得积分10
19秒前
思源应助MOhy采纳,获得10
20秒前
丘比特应助Singularity采纳,获得10
21秒前
踏实的傲白完成签到 ,获得积分10
22秒前
22秒前
24秒前
充电宝应助阔达靖琪采纳,获得10
25秒前
27秒前
yelide完成签到,获得积分10
28秒前
28秒前
28秒前
谦让的小姜应助Hayat采纳,获得20
29秒前
29秒前
Lucas应助happy采纳,获得10
30秒前
舒适新梅发布了新的文献求助10
30秒前
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234275
求助须知:如何正确求助?哪些是违规求助? 2880628
关于积分的说明 8216394
捐赠科研通 2548249
什么是DOI,文献DOI怎么找? 1377627
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302