Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance

去模糊 计算机科学 图像复原 降噪 噪音(视频) 人工智能 投影(关系代数) 采样(信号处理) 算法 图像(数学) 图像处理 计算机视觉 滤波器(信号处理)
作者
Tomer Garber,Tom Tirer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.16519
摘要

Training deep neural networks has become a common approach for addressing image restoration problems. An alternative for training a "task-specific" network for each observation model is to use pretrained deep denoisers for imposing only the signal's prior within iterative algorithms, without additional training. Recently, a sampling-based variant of this approach has become popular with the rise of diffusion/score-based generative models. Using denoisers for general purpose restoration requires guiding the iterations to ensure agreement of the signal with the observations. In low-noise settings, guidance that is based on back-projection (BP) has been shown to be a promising strategy (used recently also under the names "pseudoinverse" or "range/null-space" guidance). However, the presence of noise in the observations hinders the gains from this approach. In this paper, we propose a novel guidance technique, based on preconditioning that allows traversing from BP-based guidance to least squares based guidance along the restoration scheme. The proposed approach is robust to noise while still having much simpler implementation than alternative methods (e.g., it does not require SVD or a large number of iterations). We use it within both an optimization scheme and a sampling-based scheme, and demonstrate its advantages over existing methods for image deblurring and super-resolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冷傲手套发布了新的文献求助30
1秒前
汉堡包应助hanchangcun采纳,获得10
2秒前
3秒前
5秒前
爆米花应助c程序语言采纳,获得10
6秒前
6秒前
行者无疆发布了新的文献求助10
7秒前
沈格完成签到,获得积分10
7秒前
翻斗花园612完成签到,获得积分10
7秒前
慕子完成签到 ,获得积分10
8秒前
kitty完成签到 ,获得积分10
8秒前
10秒前
15秒前
17秒前
17秒前
小zhu完成签到,获得积分10
18秒前
钟冠完成签到,获得积分10
20秒前
洪山老狗完成签到,获得积分10
22秒前
MOD发布了新的文献求助10
23秒前
脑洞疼应助xiaoxixiccccc采纳,获得10
23秒前
万能图书馆应助Umind采纳,获得10
23秒前
24秒前
Zhou完成签到,获得积分10
24秒前
24秒前
田様应助qiany采纳,获得10
25秒前
c程序语言发布了新的文献求助10
28秒前
冷傲手套完成签到,获得积分20
30秒前
31秒前
31秒前
幸运小狗发布了新的文献求助10
32秒前
chris chen完成签到,获得积分10
32秒前
旭旭完成签到 ,获得积分10
33秒前
钟冠发布了新的文献求助10
33秒前
hanchangcun发布了新的文献求助10
34秒前
奇奇怪怪完成签到 ,获得积分10
36秒前
37秒前
yt发布了新的文献求助10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645315
关于积分的说明 14674844
捐赠科研通 4586430
什么是DOI,文献DOI怎么找? 2516437
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870