Rational synergism in spatial nanostructures and heterogeneity are effective ways to enhance reaction reversibility and kinetics of materials for sodium-ion battery electrodes. Herein, we have designed MoS2@CoS2 heterostructured tube-in-tube hollow nanofibers via simple electrospinning, pyrolysis and sulfuration processes. The unique double-walled tubular structure resulted from a stepwise crystallization accompanied by pyrolysis volume shrinkage. It has appropriate void space and abundant MoS2@CoS2 heterointerfaces that can effectively avoid the volumetric change during the reaction process and accelerate the whole infiltration of the electrolyte. The formed MoS2/CoS2 heterojunction introduces a built-in electric field, which increases the adsorption energy and reduces the migration energy barrier of sodium ions. The synergies between distinctive hollow structures and heterogeneous compositional advantages lead to enhanced electrochemical performance for sodium storage with remarkable reversible capacity (858.3 mAh g–1 at 0.5 A g–1), high-rate performance (555.7 mAh g–1 at 5 A g–1), and superior long-term cycling stability (399.6 mAh g–1 after 1400 cycles at 8 A g–1). This rational spatial structures and heterogeneity synergetic strategy provide favorable inspiration for designing extraordinary performance electrode materials for sodium-ion batteries.