Enhancing Low Carbon Awareness in Social Media Discourse: A Fuzzy Clustering Approach

计算机科学 聚类分析 社会化媒体 宣传 背景(考古学) 数据挖掘 模糊逻辑 数据科学 人工智能 政治学 万维网 生物 古生物学 法学
作者
Chao Han,Xuezhi Sun
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2023.3348123
摘要

The frequent occurrence of extreme weather makes people pay more attention to environmental protection. To cope with the global climate problem, various countries re-plan social development through the concept of low-carbon. As greatly popularized by the Internet, the topic of low carbon concept is spread more through online social media, so it is urgent to understand the user’s attention to low carbon topics in a more intelligent way for subsequent relevant publicity and policy guidance. This paper studies the low-carbon topic of attention in the context of social media. First, the BERT (Bidirectional Encoder Representation from Transformers) model is used to complete the word vector feature extraction of acquired data; Secondly, the FCM method was used to complete the clustering analysis of the main topics in the low-carbon concept, and the PSO method was used to optimize the model. After optimization, the accuracy of clustering for various topics was higher than 80%. For the Esse index of cluster center variance, the method proposed in this article is also close to 10% due to other classic methods; Finally, this paper carried out an application test of low-carbon topics in the region, achieved good results, and made a detailed analysis of the distribution of various topics. It can be predicted that this method will provide more public opinion references for low-carbon development paths in various countries and regions in the future, and provide technical support for information dissemination and analysis under social media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
adazbd完成签到,获得积分20
1秒前
1秒前
bkagyin应助又得起名了采纳,获得10
2秒前
无疆发布了新的文献求助10
2秒前
3秒前
于大夫完成签到 ,获得积分10
3秒前
Hello应助Dd采纳,获得10
3秒前
科研通AI5应助丛玉林采纳,获得10
3秒前
卡卡游星完成签到,获得积分10
5秒前
胖达发布了新的文献求助10
5秒前
azur完成签到,获得积分10
6秒前
7秒前
8秒前
bcsunny2022完成签到,获得积分10
8秒前
8秒前
脑洞疼应助搞怪诗桃采纳,获得10
8秒前
良辰应助研友_Z33zkZ采纳,获得10
8秒前
晚朝完成签到,获得积分20
9秒前
不安毛豆应助YY采纳,获得10
11秒前
共享精神应助simon采纳,获得10
11秒前
洋芋片完成签到 ,获得积分10
12秒前
yyyy发布了新的文献求助10
12秒前
xuxin完成签到,获得积分10
13秒前
酒仙发布了新的文献求助10
13秒前
13秒前
轻轻完成签到 ,获得积分10
14秒前
chun完成签到,获得积分20
15秒前
sunny关注了科研通微信公众号
15秒前
SYLH应助yihoxu采纳,获得10
15秒前
15秒前
15秒前
胖达完成签到,获得积分10
15秒前
15秒前
斯文问旋完成签到,获得积分10
18秒前
chun发布了新的文献求助10
18秒前
Sophie完成签到,获得积分10
19秒前
科研通AI5应助Selenge采纳,获得10
19秒前
王梽旭完成签到,获得积分20
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546764
求助须知:如何正确求助?哪些是违规求助? 3123808
关于积分的说明 9356884
捐赠科研通 2822427
什么是DOI,文献DOI怎么找? 1551441
邀请新用户注册赠送积分活动 723417
科研通“疑难数据库(出版商)”最低求助积分说明 713756