G-Induced Loss of Consciousness Prediction Using a Support Vector Machine

支持向量机 人工智能 机器学习 高斯函数 径向基函数核 计算机科学 模式识别(心理学) 高斯分布 核方法 物理 表演艺术 艺术 艺术史 量子力学
作者
Nobuhiro Ohrui,Yuji Iino,Koichiro Kuramoto,Azusa Kikukawa,Koji Okano,Kunio Takada,Tetsuya Tsujimoto
出处
期刊:Aerospace medicine and human performance [Aerospace Medical Association]
卷期号:95 (1): 29-36
标识
DOI:10.3357/amhp.6301.2024
摘要

INTRODUCTION: Gravity-induced loss of consciousness (G-LOC) is a major threat to fighter pilots and may result in fatal accidents. The brain has a period of 5–6 s from the onset of high +G z exposure, called the functional buffer period, during which transient ischemia is tolerated without loss of consciousness. We tried to establish a method for predicting G-LOC within the functional buffer period by using machine learning. We used a support vector machine (SVM), which is a popular classification algorithm in machine learning. METHODS: The subjects were 124 flight course students. We used a linear soft-margin SVM, a nonlinear SVM Gaussian kernel function (GSVM), and a polynomial kernel function, for each of which 10 classifiers were built every 0.5 s from the onset of high +G z exposure (Classifiers 0.5–5.0) to predict G-LOC. Explanatory variables used for each SVM were age, height, weight, with/without anti-G suit, +G z level, cerebral oxyhemoglobin concentration, and deoxyhemoglobin concentration. RESULTS: The performance of GSVM was better than that of other SVMs. The accuracy of each classifier of GSVM was as follows: Classifier 0.5, 58.1%; 1.0, 54.8%; 1.5, 57.3%; 2.0, 58.1%; 2.5, 64.5%; 3.0, 63.7%; 3.5, 65.3%; 4.0, 64.5%; 4.5, 64.5%; and 5.0, 64.5%. CONCLUSION: We could predict G-LOC with an accuracy rate of approximately 65% from 2.5 s after the onset of high +G z exposure by using GSVM. Analysis of a larger number of cases and factors to enhance accuracy may be needed to apply those classifiers in centrifuge training and actual flight. Ohrui N, Iino Y, Kuramoto K, Kikukawa A, Okano K, Takada K, Tsujimoto T. G-induced loss of consciousness prediction using a support vector machine . Aerosp Med Hum Perform. 2024; 95(1):29–36.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助润润轩轩采纳,获得10
刚刚
刘文静完成签到,获得积分10
1秒前
Southluuu发布了新的文献求助10
1秒前
chenjyuu发布了新的文献求助10
1秒前
1秒前
粗暴的仙人掌完成签到,获得积分20
1秒前
2秒前
2秒前
2秒前
logic发布了新的文献求助10
2秒前
习习应助生动的雨竹采纳,获得10
2秒前
bo完成签到 ,获得积分10
2秒前
迟大猫应助啵乐乐采纳,获得10
3秒前
安雯完成签到 ,获得积分10
3秒前
HuLL完成签到,获得积分10
3秒前
Yolo完成签到 ,获得积分10
3秒前
难过的慕青完成签到,获得积分10
3秒前
5秒前
5秒前
5秒前
6秒前
无花果应助sunzhiyu233采纳,获得10
6秒前
韭黄完成签到,获得积分20
6秒前
7秒前
诚c发布了新的文献求助10
7秒前
自然秋柳完成签到 ,获得积分10
7秒前
我是老大应助经法采纳,获得10
7秒前
默默的皮牙子应助经法采纳,获得10
7秒前
orixero应助经法采纳,获得10
7秒前
小马甲应助经法采纳,获得10
7秒前
柚子成精应助经法采纳,获得10
8秒前
小蘑菇应助经法采纳,获得10
8秒前
深情安青应助经法采纳,获得10
8秒前
李爱国应助经法采纳,获得10
8秒前
共享精神应助经法采纳,获得10
8秒前
yyyyyy完成签到 ,获得积分10
8秒前
LL完成签到,获得积分10
8秒前
ziyiziyi发布了新的文献求助10
9秒前
哈哈哈haha发布了新的文献求助40
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759