G-Induced Loss of Consciousness Prediction Using a Support Vector Machine

支持向量机 人工智能 机器学习 高斯函数 径向基函数核 计算机科学 模式识别(心理学) 高斯分布 核方法 物理 艺术史 量子力学 艺术 表演艺术
作者
Nobuhiro Ohrui,Yuji Iino,Koichiro Kuramoto,Azusa Kikukawa,Koji Okano,Kunio Takada,Tetsuya Tsujimoto
出处
期刊:Aerospace medicine and human performance [Aerospace Medical Association]
卷期号:95 (1): 29-36
标识
DOI:10.3357/amhp.6301.2024
摘要

INTRODUCTION: Gravity-induced loss of consciousness (G-LOC) is a major threat to fighter pilots and may result in fatal accidents. The brain has a period of 5–6 s from the onset of high +G z exposure, called the functional buffer period, during which transient ischemia is tolerated without loss of consciousness. We tried to establish a method for predicting G-LOC within the functional buffer period by using machine learning. We used a support vector machine (SVM), which is a popular classification algorithm in machine learning. METHODS: The subjects were 124 flight course students. We used a linear soft-margin SVM, a nonlinear SVM Gaussian kernel function (GSVM), and a polynomial kernel function, for each of which 10 classifiers were built every 0.5 s from the onset of high +G z exposure (Classifiers 0.5–5.0) to predict G-LOC. Explanatory variables used for each SVM were age, height, weight, with/without anti-G suit, +G z level, cerebral oxyhemoglobin concentration, and deoxyhemoglobin concentration. RESULTS: The performance of GSVM was better than that of other SVMs. The accuracy of each classifier of GSVM was as follows: Classifier 0.5, 58.1%; 1.0, 54.8%; 1.5, 57.3%; 2.0, 58.1%; 2.5, 64.5%; 3.0, 63.7%; 3.5, 65.3%; 4.0, 64.5%; 4.5, 64.5%; and 5.0, 64.5%. CONCLUSION: We could predict G-LOC with an accuracy rate of approximately 65% from 2.5 s after the onset of high +G z exposure by using GSVM. Analysis of a larger number of cases and factors to enhance accuracy may be needed to apply those classifiers in centrifuge training and actual flight. Ohrui N, Iino Y, Kuramoto K, Kikukawa A, Okano K, Takada K, Tsujimoto T. G-induced loss of consciousness prediction using a support vector machine . Aerosp Med Hum Perform. 2024; 95(1):29–36.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭泓嵩完成签到,获得积分10
1秒前
sun完成签到,获得积分20
1秒前
wenjun_50完成签到 ,获得积分10
1秒前
1秒前
情怀应助健忘小霜采纳,获得10
2秒前
2秒前
乐观寻雪发布了新的文献求助10
2秒前
kento完成签到,获得积分0
3秒前
3秒前
3秒前
Dean完成签到 ,获得积分10
4秒前
cy完成签到,获得积分10
4秒前
5秒前
5秒前
Marilinta完成签到,获得积分10
6秒前
凌ling发布了新的文献求助10
6秒前
recardo发布了新的文献求助10
7秒前
7秒前
7秒前
标致惋庭完成签到,获得积分20
8秒前
大狒狒发布了新的文献求助30
9秒前
老实的栾完成签到,获得积分10
9秒前
大模型应助flower6991采纳,获得10
10秒前
完美世界应助大马哈鱼采纳,获得10
10秒前
甜甜慕灵发布了新的文献求助80
10秒前
10秒前
缓慢雅青发布了新的文献求助10
10秒前
11秒前
11秒前
落寞太阳发布了新的文献求助10
12秒前
Tuotuo完成签到 ,获得积分10
12秒前
赘婿应助recardo采纳,获得10
12秒前
高兴翠绿完成签到,获得积分10
12秒前
十三发布了新的文献求助10
12秒前
晓晓来了完成签到,获得积分10
12秒前
宜醉宜游宜睡应助Krapanda采纳,获得10
12秒前
13秒前
东方欲晓发布了新的文献求助10
13秒前
打打应助Jerry采纳,获得10
13秒前
wangxuan完成签到,获得积分10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295048
求助须知:如何正确求助?哪些是违规求助? 2931132
关于积分的说明 8450429
捐赠科研通 2603659
什么是DOI,文献DOI怎么找? 1421217
科研通“疑难数据库(出版商)”最低求助积分说明 660854
邀请新用户注册赠送积分活动 643708