Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling

随机森林 机器学习 均方误差 抗弯强度 极限抗拉强度 线性回归 人工智能 熔融沉积模型 计算机科学 回归分析 阿达布思 决定系数 决策树 回归 支持向量机 材料科学 数学 统计 3D打印 复合材料
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Rapid Prototyping Journal [Emerald Publishing Limited]
卷期号:30 (3): 441-459 被引量:2
标识
DOI:10.1108/rpj-02-2023-0042
摘要

Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination ( R 2 ) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助jimskylxk采纳,获得10
2秒前
玫玫发布了新的文献求助10
2秒前
pluto完成签到,获得积分0
3秒前
nature预备军完成签到 ,获得积分10
3秒前
cailiaokexue完成签到,获得积分10
4秒前
小乔发布了新的文献求助10
5秒前
娜娜子完成签到 ,获得积分10
6秒前
liyanglin发布了新的文献求助20
6秒前
刘肖完成签到,获得积分10
8秒前
阿景完成签到 ,获得积分10
10秒前
1+1应助科研通管家采纳,获得10
10秒前
实验好难应助科研通管家采纳,获得10
10秒前
劲秉应助科研通管家采纳,获得10
10秒前
lijianguo应助科研通管家采纳,获得10
10秒前
胡萝卜应助科研通管家采纳,获得20
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
xsxx应助科研通管家采纳,获得10
11秒前
实验好难应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
迟大猫应助科研通管家采纳,获得10
11秒前
nozero应助科研通管家采纳,获得30
11秒前
Orange应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
zhangyidian应助科研通管家采纳,获得10
11秒前
1+1应助科研通管家采纳,获得10
11秒前
nozero应助科研通管家采纳,获得30
12秒前
CodeCraft应助科研通管家采纳,获得30
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
oooh应助科研通管家采纳,获得50
12秒前
nozero应助科研通管家采纳,获得30
12秒前
12秒前
迟大猫应助科研通管家采纳,获得10
12秒前
实验好难应助科研通管家采纳,获得10
12秒前
迟大猫应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
nozero应助科研通管家采纳,获得30
12秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093