亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling

随机森林 机器学习 均方误差 抗弯强度 极限抗拉强度 线性回归 人工智能 熔融沉积模型 计算机科学 回归分析 阿达布思 决定系数 决策树 回归 支持向量机 材料科学 数学 统计 3D打印 复合材料
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Rapid Prototyping Journal [Emerald (MCB UP)]
卷期号:30 (3): 441-459 被引量:2
标识
DOI:10.1108/rpj-02-2023-0042
摘要

Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination ( R 2 ) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
9秒前
阿星发布了新的文献求助10
11秒前
11秒前
英俊的铭应助倒逆之蝶采纳,获得10
13秒前
16秒前
qpp完成签到,获得积分10
18秒前
呵呵完成签到,获得积分10
22秒前
22秒前
清浅发布了新的文献求助10
23秒前
雪霁完成签到,获得积分10
23秒前
25秒前
26秒前
35秒前
俊逸的念寒完成签到 ,获得积分10
37秒前
556应助清浅采纳,获得10
43秒前
冷静的振家完成签到,获得积分10
43秒前
领导范儿应助chen采纳,获得10
46秒前
48秒前
50秒前
50秒前
51秒前
fay发布了新的文献求助10
52秒前
53秒前
57秒前
1分钟前
chen完成签到,获得积分10
1分钟前
火山蜗牛完成签到,获得积分10
1分钟前
chen发布了新的文献求助10
1分钟前
1分钟前
王钢铁完成签到,获得积分10
1分钟前
科研通AI2S应助盛夏如花采纳,获得10
1分钟前
1分钟前
小森华东完成签到 ,获得积分10
1分钟前
倒逆之蝶发布了新的文献求助10
1分钟前
在水一方应助帅气的亦玉采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984