Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling

随机森林 机器学习 均方误差 抗弯强度 极限抗拉强度 线性回归 人工智能 熔融沉积模型 计算机科学 回归分析 阿达布思 决定系数 决策树 回归 支持向量机 材料科学 数学 统计 3D打印 复合材料
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Rapid Prototyping Journal [Emerald (MCB UP)]
卷期号:30 (3): 441-459 被引量:2
标识
DOI:10.1108/rpj-02-2023-0042
摘要

Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination ( R 2 ) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助123采纳,获得10
1秒前
2秒前
yu发布了新的文献求助10
2秒前
Hello应助清脆的涔采纳,获得10
3秒前
3秒前
谨慎的橘子完成签到 ,获得积分10
4秒前
无花果应助香蕉子骞采纳,获得10
5秒前
在路上应助三更笔舞采纳,获得10
6秒前
7秒前
王二发布了新的文献求助10
7秒前
美满的涔发布了新的文献求助10
7秒前
lng发布了新的文献求助30
7秒前
8秒前
1111发布了新的文献求助10
8秒前
英俊的铭应助hun采纳,获得10
9秒前
搜集达人应助朴实的剑通采纳,获得30
9秒前
tiancu完成签到,获得积分10
10秒前
阳光的中蓝完成签到,获得积分10
13秒前
慕青应助周芷卉采纳,获得10
13秒前
zjh发布了新的文献求助10
13秒前
成佳木发布了新的文献求助10
14秒前
桐桐应助风枫叶采纳,获得10
14秒前
15秒前
丘比特应助乐乐乐乐乐乐采纳,获得10
15秒前
yu发布了新的文献求助10
16秒前
我是老大应助WeiX__Chen采纳,获得10
17秒前
17秒前
星辰大海应助12li采纳,获得10
17秒前
科研通AI2S应助雪白的乐巧采纳,获得10
17秒前
19秒前
大力大楚完成签到,获得积分10
19秒前
21秒前
WCQ发布了新的文献求助20
21秒前
公孙朝雨发布了新的文献求助10
21秒前
21秒前
郑麻发布了新的文献求助10
23秒前
安静的遥完成签到,获得积分10
25秒前
26秒前
SciGPT应助谦让的焱采纳,获得10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138888
求助须知:如何正确求助?哪些是违规求助? 2789815
关于积分的说明 7792820
捐赠科研通 2446185
什么是DOI,文献DOI怎么找? 1300930
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079