Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling

随机森林 机器学习 均方误差 抗弯强度 极限抗拉强度 线性回归 人工智能 熔融沉积模型 计算机科学 回归分析 阿达布思 决定系数 决策树 回归 支持向量机 材料科学 数学 统计 3D打印 复合材料
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Rapid Prototyping Journal [Emerald Publishing Limited]
卷期号:30 (3): 441-459 被引量:2
标识
DOI:10.1108/rpj-02-2023-0042
摘要

Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination ( R 2 ) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助hewd3采纳,获得10
刚刚
popvich应助Azlne采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
干饭虫应助科研通管家采纳,获得10
1秒前
Rita应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
干饭虫应助科研通管家采纳,获得10
1秒前
干饭虫应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
杨好圆完成签到,获得积分10
2秒前
2秒前
英俊的幻天完成签到,获得积分10
5秒前
smart发布了新的文献求助10
6秒前
6秒前
慕青应助时有落花至采纳,获得10
7秒前
7秒前
陈欣发布了新的文献求助10
7秒前
背后夜蓉发布了新的文献求助10
8秒前
Orange应助xixi采纳,获得10
9秒前
chowjb完成签到,获得积分10
11秒前
占囧发布了新的文献求助30
11秒前
务实青筠完成签到 ,获得积分10
11秒前
龙舞星完成签到,获得积分10
13秒前
默默完成签到,获得积分10
13秒前
卷卷完成签到,获得积分10
14秒前
香蕉觅云应助vivi采纳,获得10
14秒前
xxme77发布了新的文献求助10
14秒前
思源应助CY采纳,获得10
14秒前
14秒前
smart完成签到,获得积分10
14秒前
VDC应助朱珏虹采纳,获得30
16秒前
16秒前
11关注了科研通微信公众号
17秒前
浮游应助daydream采纳,获得10
17秒前
祁乾完成签到 ,获得积分10
17秒前
17秒前
yjf完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979699
求助须知:如何正确求助?哪些是违规求助? 4232313
关于积分的说明 13183302
捐赠科研通 4023465
什么是DOI,文献DOI怎么找? 2201316
邀请新用户注册赠送积分活动 1213777
关于科研通互助平台的介绍 1130020