Machine learning for forecasting the biomechanical behavior of orthopedic bone plates fabricated by fused deposition modeling

随机森林 机器学习 均方误差 抗弯强度 极限抗拉强度 线性回归 人工智能 熔融沉积模型 计算机科学 回归分析 阿达布思 决定系数 决策树 回归 支持向量机 材料科学 数学 统计 3D打印 复合材料
作者
Shrutika Sharma,Vishal Gupta,Deepa Mudgal,Vishal Srivastava
出处
期刊:Rapid Prototyping Journal [Emerald (MCB UP)]
卷期号:30 (3): 441-459 被引量:2
标识
DOI:10.1108/rpj-02-2023-0042
摘要

Purpose Three-dimensional (3D) printing is highly dependent on printing process parameters for achieving high mechanical strength. It is a time-consuming and expensive operation to experiment with different printing settings. The current study aims to propose a regression-based machine learning model to predict the mechanical behavior of ulna bone plates. Design/methodology/approach The bone plates were formed using fused deposition modeling (FDM) technique, with printing attributes being varied. The machine learning models such as linear regression, AdaBoost regression, gradient boosting regression (GBR), random forest, decision trees and k-nearest neighbors were trained for predicting tensile strength and flexural strength. Model performance was assessed using root mean square error (RMSE), coefficient of determination ( R 2 ) and mean absolute error (MAE). Findings Traditional experimentation with various settings is both time-consuming and expensive, emphasizing the need for alternative approaches. Among the models tested, GBR model demonstrated the best performance in predicting both tensile and flexural strength and achieved the lowest RMSE, highest R2 and lowest MAE, which are 1.4778 ± 0.4336 MPa, 0.9213 ± 0.0589 and 1.2555 ± 0.3799 MPa, respectively, and 3.0337 ± 0.3725 MPa, 0.9269 ± 0.0293 and 2.3815 ± 0.2915 MPa, respectively. The findings open up opportunities for doctors and surgeons to use GBR as a reliable tool for fabricating patient-specific bone plates, without the need for extensive trial experiments. Research limitations/implications The current study is limited to the usage of a few models. Other machine learning-based models can be used for prediction-based study. Originality/value This study uses machine learning to predict the mechanical properties of FDM-based distal ulna bone plate, replacing traditional design of experiments methods with machine learning to streamline the production of orthopedic implants. It helps medical professionals, such as physicians and surgeons, make informed decisions when fabricating customized bone plates for their patients while reducing the need for time-consuming experimentation, thereby addressing a common limitation of 3D printing medical implants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助赫连烙采纳,获得10
1秒前
renwoxing发布了新的文献求助10
1秒前
2秒前
Yang应助多情的青曼采纳,获得10
2秒前
里里完成签到,获得积分10
3秒前
明明发布了新的文献求助10
4秒前
4秒前
UD发布了新的文献求助10
5秒前
5秒前
6秒前
万能图书馆应助lllll采纳,获得10
6秒前
传奇3应助西瓜采纳,获得10
8秒前
8秒前
细心笑卉完成签到 ,获得积分10
8秒前
yan123发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
tu完成签到,获得积分10
10秒前
yn发布了新的文献求助10
12秒前
小丁发布了新的文献求助10
12秒前
英格兰胖头鱼完成签到 ,获得积分10
12秒前
13秒前
明明完成签到,获得积分20
14秒前
oligo发布了新的文献求助10
14秒前
烟花应助JIEJIEJIE采纳,获得10
15秒前
fool发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
天天快乐应助yan123采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
心如止水发布了新的文献求助50
20秒前
20秒前
Jasper应助沉默采纳,获得10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507123
求助须知:如何正确求助?哪些是违规求助? 4602518
关于积分的说明 14481925
捐赠科研通 4536520
什么是DOI,文献DOI怎么找? 2486226
邀请新用户注册赠送积分活动 1468816
关于科研通互助平台的介绍 1441292