亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed W-Net GAN for the direct stochastic inversion of fullstack seismic data into facies models

反演(地质) 反问题 计算机科学 不确定度量化 数据同化 地球物理学 地质学 概率逻辑 数据挖掘 算法 机器学习 人工智能 地震学 数学 物理 气象学 古生物学 数学分析 构造盆地 构造学
作者
Roberto Miele,Leonardo Azevedo
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-55683-5
摘要

Abstract Predicting the subsurface spatial distribution of geological facies from fullstack geophysical data is a main step in the geo-modeling workflow for energy exploration and environmental tasks and requires solving an inverse problem. Generative adversarial networks (GANs) have shown great potential for geologically accurate probabilistic inverse modeling, but existing methods require multiple sequential steps and do not account for the spatial uncertainty of facies-dependent continuous properties, linking the facies to the observed geophysical data. This can lead to biased predictions of facies distributions and inaccurate quantification of the associated uncertainty. To overcome these limitations, we propose a GAN able to learn the physics-based mapping between facies and seismic domains, while accounting for the spatial uncertainty of such facies-dependent properties. During its adversarial training, the network reads the observed geophysical data, providing solutions to the inverse problems directly in a single step. The method is demonstrated on 2-D examples, using both synthetic and real data from the Norne field (Norwegian North Sea). The results show that the trained GAN can model facies patterns matching the spatial continuity patterns observed in the training images, fitting the observed geophysical data, and with a variability proportional to the spatial uncertainty of the facies-dependent properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Cecila完成签到,获得积分10
2秒前
2秒前
饼子发布了新的文献求助10
3秒前
一念莲花舟完成签到,获得积分10
12秒前
13秒前
13秒前
maher完成签到 ,获得积分10
16秒前
16秒前
17秒前
俏皮跳跳糖完成签到,获得积分10
18秒前
simon完成签到 ,获得积分10
24秒前
kHz完成签到,获得积分10
26秒前
28秒前
小马甲应助道松先生采纳,获得10
31秒前
36秒前
道松先生完成签到,获得积分10
36秒前
Evaporate发布了新的文献求助10
39秒前
39秒前
郁启蒙完成签到 ,获得积分10
42秒前
46秒前
null完成签到,获得积分0
53秒前
duoduoqian发布了新的文献求助10
56秒前
57秒前
古月完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
WANG发布了新的文献求助10
1分钟前
xiaoxiao发布了新的文献求助10
1分钟前
寒玉发布了新的文献求助30
1分钟前
Kkk完成签到 ,获得积分10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
xiaoxiao完成签到,获得积分10
1分钟前
典雅易槐发布了新的文献求助10
1分钟前
1分钟前
99668完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493741
求助须知:如何正确求助?哪些是违规求助? 4591745
关于积分的说明 14434583
捐赠科研通 4524146
什么是DOI,文献DOI怎么找? 2478673
邀请新用户注册赠送积分活动 1463681
关于科研通互助平台的介绍 1436464