亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Two‐stage deep‐learning‐based colonoscopy polyp detection incorporating fisheye and reflection correction

结肠镜检查 人工智能 卷积神经网络 医学 深度学习 计算机科学 接收机工作特性 阶段(地层学) 大肠息肉 放射科 计算机视觉 模式识别(心理学) 结直肠癌 内科学 古生物学 癌症 生物
作者
Chen‐Ming Hsu,Tsung‐Hsing Chen,Chien‐Chang Hsu,C.J. Wu,Chun‐Jung Lin,Puo‐Hsien Le,Cheng‐Yu Lin,Tony Kuo
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (4): 733-739 被引量:2
标识
DOI:10.1111/jgh.16470
摘要

Abstract Background and Aim Colonoscopy is a useful method for the diagnosis and management of colorectal diseases. Many computer‐aided systems have been developed to assist clinicians in detecting colorectal lesions by analyzing colonoscopy images. However, fisheye‐lens distortion and light reflection in colonoscopy images can substantially affect the clarity of these images and their utility in detecting polyps. This study proposed a two‐stage deep‐learning model to correct distortion and reflections in colonoscopy images and thus facilitate polyp detection. Methods Images were collected from the PolypSet dataset, the Kvasir‐SEG dataset, and one medical center's patient archiving and communication system. The training, validation, and testing datasets comprised 808, 202, and 1100 images, respectively. The first stage involved the correction of fisheye‐related distortion in colonoscopy images and polyp detection, which was performed using a convolutional neural network. The second stage involved the use of generative and adversarial networks for correcting reflective colonoscopy images before the convolutional neural network was used for polyp detection. Results The model had higher accuracy when it was validated using corrected images than when it was validated using uncorrected images (96.8% vs 90.8%, P < 0.001). The model's accuracy in detecting polyps in the Kvasir‐SEG dataset reached 96%, and the area under the receiver operating characteristic curve was 0.94. Conclusion The proposed model can facilitate the clinical diagnosis of colorectal polyps and improve the quality of colonoscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc完成签到,获得积分0
刚刚
大胆猎豹完成签到 ,获得积分10
8秒前
8秒前
星辰大海应助JonyQ采纳,获得10
11秒前
16秒前
20秒前
21秒前
21秒前
星辰大海应助科研通管家采纳,获得10
21秒前
JonyQ发布了新的文献求助10
22秒前
24秒前
24秒前
JonyQ完成签到,获得积分20
28秒前
动漫大师发布了新的文献求助10
31秒前
43秒前
hugeyoung完成签到,获得积分10
49秒前
58秒前
nenoaowu完成签到,获得积分10
1分钟前
Ava应助KK采纳,获得10
1分钟前
1分钟前
新威宝贝发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lihh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
KK发布了新的文献求助10
1分钟前
务实书包完成签到,获得积分10
2分钟前
新威宝贝完成签到 ,获得积分0
2分钟前
善学以致用应助KK采纳,获得10
2分钟前
2分钟前
2分钟前
共享精神应助nfckj采纳,获得10
2分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
adazbq完成签到 ,获得积分10
2分钟前
高分求助中
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681624
求助须知:如何正确求助?哪些是违规求助? 3233528
关于积分的说明 9809007
捐赠科研通 2945032
什么是DOI,文献DOI怎么找? 1615028
邀请新用户注册赠送积分活动 762505
科研通“疑难数据库(出版商)”最低求助积分说明 737455