亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation of vehicle control delay using artificial intelligence techniques for heterogeneous traffic conditions

均方误差 支持向量机 计算机科学 人工神经网络 随机森林 特征(语言学) 人工智能 标准差 决策树 机器学习 特征选择 交叉口(航空) 数据挖掘 统计 数学 工程类 哲学 航空航天工程 语言学
作者
Pranjal Ranpura,Vipin Shukla,Rajesh Gujar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:246: 123206-123206 被引量:2
标识
DOI:10.1016/j.eswa.2024.123206
摘要

The conventional standardized theoretical models (such as Webster, Alcelik, Indo-HCM) used for the delay estimation revolve around the mathematical hypothesis and assumptions, making them static with limitations in accommodating the dynamic traffic behaviors. Recent advances in artificial intelligence make machine learning techniques suitable for estimating vehicle control delay compared to conventional methods. This paper demonstrates the application of several machine learning models developed by focusing on the fluctuations of traffic observed at an intersection having heterogeneous traffic conditions in Ahmedabad city for delay estimation. Several parameters are extracted from on-field and video surveys. However, not all parameters are relevant for accurately estimating vehicle control delay. Hence, a feature selection process consisting of several feature-scoring techniques from filter, wrapper, and embedded methods is applied to all the parameters. This process gave insights into the most statistically relevant independent parameters, and out of all the parameters, cycle time was found to be insignificant, with a feature score of 0 from almost all techniques. Hence, it was removed, and then the prominent parameters were then used to build a vehicle control delay model using support vector regression (SVR), K-nearest neighbor (KNN), artificial neural network (ANN), random forest regression (RF), and decision tree regression (DT). Error distribution, standard deviation of errors, coefficient of Determination (R2), and Root Mean Squared Error (RMSE) are the parameters used for evaluating the performance of the machine learning models. RF outperformed them all with a standard deviation of errors, R2, and RMSE of 11.065, 0.926, and 11.081 on testing data. But ANN, KNN, and DT also performed satisfactorily. Compared with conventional standardized theoretical models, all the machine learning models except SVR performed better.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
28秒前
wrl2023发布了新的文献求助10
33秒前
1分钟前
奋斗的杰发布了新的文献求助10
1分钟前
辣椒完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
123关闭了123文献求助
3分钟前
丘比特应助救救小王叭采纳,获得10
3分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Flexy发布了新的文献求助10
5分钟前
5分钟前
核桃发布了新的文献求助10
5分钟前
田様应助Monet采纳,获得10
5分钟前
6分钟前
凶狠的寄风完成签到 ,获得积分10
6分钟前
Monet发布了新的文献求助10
6分钟前
6分钟前
A水暖五金批发张哥完成签到,获得积分10
6分钟前
tan发布了新的文献求助20
6分钟前
郗妫完成签到,获得积分10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
生动土匪发布了新的文献求助10
7分钟前
缓慢的枫叶应助tan采纳,获得60
7分钟前
7分钟前
凉月发布了新的文献求助10
7分钟前
大风车发布了新的文献求助10
7分钟前
凉月完成签到,获得积分20
7分钟前
科研通AI2S应助凉月采纳,获得10
7分钟前
柴三岁完成签到,获得积分20
8分钟前
酷波er应助科研通管家采纳,获得10
8分钟前
顾君如完成签到 ,获得积分10
8分钟前
汉堡包应助柴三岁采纳,获得10
9分钟前
止戈完成签到 ,获得积分10
9分钟前
9分钟前
zhangxr发布了新的文献求助10
9分钟前
科研通AI2S应助zhangxr采纳,获得10
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899688
捐赠科研通 2472818
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142