超级电容器
材料科学
纳米技术
电容
储能
电极
多孔性
自愈水凝胶
电化学
电解质
自组装
电化学储能
化学工程
纳米尺度
复合材料
化学
量子力学
物理
工程类
物理化学
功率(物理)
高分子化学
作者
Anirban Sikdar,Frédéric Héraly,Hao Zhang,Stephen A. Hall,Kanglei Pang,Miao Zhang,Jiayin Yuan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-01-17
卷期号:18 (4): 3707-3719
被引量:34
标识
DOI:10.1021/acsnano.3c11551
摘要
The true promise of MXene as a practical supercapacitor electrode hinges on the simultaneous advancement of its three-dimensional (3D) assembly and the engineering of its nanoscopic architecture, two critical factors for facilitating mass transport and enhancing an electrode's charge-storage performance. Herein, we present a straightforward strategy to engineer robust 3D freestanding MXene (Ti3C2Tx) hydrogels with hierarchically porous structures. The tetraamminezinc(II) complex cation ([Zn(NH3)4]2+) is selected to electrostatically assemble colloidal MXene nanosheets into a 3D interconnected hydrogel framework, followed by a mild oxidative acid-etching process to create nanoholes on the MXene surface. These hierarchically porous, conductive holey-MXene frameworks facilitate 3D transport of both electrons and electrolyte ions to deliver an excellent specific capacitance of 359.2 F g–1 at 10 mV s–1 and superb capacitance retention of 79% at 5000 mV s–1, representing a 42.2% and 15.3% improvement over pristine MXene hydrogel, respectively. Even at a commercial-standard mass loading of 10.1 mg cm–2, it maintains an impressive capacitance retention of 52% at 1000 mV s–1. This rational design of an electrode by engineering nanoholes on MXene nanosheets within a 3D porous framework dictates a significant step forward toward the practical use of MXene and other 2D materials in electrochemical energy storage systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI