Construction of LiNi0.5Mn1.5O4 Spinel Layer-Bearing Heterostructural Li-Rich Layered Oxide Cathodes with Enhanced Structural Integrity and Cycling Stability

尖晶石 阴极 材料科学 化学工程 氧化物 共沉淀 降级(电信) 图层(电子) 离子 电压 纳米技术 化学 冶金 电子工程 物理化学 电气工程 有机化学 工程类
作者
Jie Mei,Guiyang Gao,Yuanzhi Chen,Wanjie Xu,Wei He,Saichao Li,Qingshui Xie,Laisen Wang,Pengfei Liu,Zi‐Zhong Zhu,Dong‐Liang Peng
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:12 (4): 1353-1364 被引量:1
标识
DOI:10.1021/acssuschemeng.3c04620
摘要

Li-rich layered oxides (LLOs) are promising candidates for the cathode materials of next-generation high-energy density lithium-ion batteries because of their high reversible capacity and operating voltages. However, the LLOs always undergo structure transformation, which can result in rapid decay of capacity and voltage. Herein, LiNi0.5Mn1.5O4 (LNMO) spinel layers are constructed on the surfaces of Li1.2Mn0.54Ni0.13Co0.13O2 (LLO) particles synthesized by a coprecipitation method to form a heterostructural LLO-LNMO cathode. The LLO-LNMO cathode with 1% LNMO displays a more stable long-cycling life with 82.3% capacity retention and 0.534 V voltage drop after 400 cycles at 1 C. A capacity retention of 79.6% with a voltage decay of 0.545 V after 1000 cycles at 5 C is also achieved. A calculation based on density functional theory (DFT) also indicates that lattice oxygen can be stabilized by the LNMO spinel layer. This work demonstrates that the construction of a heterostructural LLO-LNMO cathode with an LNMO spinel layer covering the surfaces of LLO can inhibit the degradation of the layered structure of LLO, restrain the voltage attenuation, and achieve enhanced long-cycling properties for potential applications of high-performance lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangjing发布了新的文献求助10
刚刚
rosexu发布了新的文献求助10
刚刚
盘尼西林发布了新的文献求助10
1秒前
科研通AI2S应助我是125采纳,获得10
1秒前
李健的小迷弟应助arkamar采纳,获得10
2秒前
Xiaoxiao完成签到,获得积分10
2秒前
cilan发布了新的文献求助10
2秒前
SciGPT应助William鉴哲采纳,获得10
2秒前
3秒前
咩咩完成签到,获得积分20
4秒前
合一海盗应助wtg采纳,获得200
4秒前
4秒前
Grayball应助ccc采纳,获得10
4秒前
bkagyin应助猪猪hero采纳,获得10
5秒前
5秒前
科研通AI5应助顺利毕业采纳,获得10
6秒前
领导范儿应助spray采纳,获得30
6秒前
6秒前
长风完成签到,获得积分10
7秒前
8秒前
吴岳发布了新的文献求助10
8秒前
科研通AI2S应助我是125采纳,获得10
9秒前
涛涛完成签到,获得积分10
9秒前
轩辕德地发布了新的文献求助10
10秒前
科研通AI2S应助jidou1011采纳,获得10
10秒前
魔幻的妖丽完成签到 ,获得积分10
11秒前
黄晓杰2024完成签到,获得积分10
12秒前
枫叶完成签到,获得积分10
13秒前
13秒前
14秒前
小二郎应助虚心盼晴采纳,获得10
14秒前
俊逸的盛男完成签到 ,获得积分10
14秒前
16秒前
脑洞疼应助枫叶采纳,获得10
17秒前
17秒前
Gyrate完成签到,获得积分10
18秒前
李李发布了新的文献求助50
18秒前
dashi完成签到 ,获得积分10
18秒前
无花果应助一天八杯水采纳,获得10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808