尖晶石
阴极
材料科学
化学工程
氧化物
共沉淀
降级(电信)
图层(电子)
离子
电压
纳米技术
化学
冶金
电子工程
物理化学
电气工程
有机化学
工程类
作者
Jie Mei,Guiyang Gao,Yuanzhi Chen,Wanjie Xu,Wei He,Saichao Li,Qingshui Xie,Laisen Wang,Pengfei Liu,Zi‐Zhong Zhu,Dong‐Liang Peng
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2024-01-17
卷期号:12 (4): 1353-1364
被引量:1
标识
DOI:10.1021/acssuschemeng.3c04620
摘要
Li-rich layered oxides (LLOs) are promising candidates for the cathode materials of next-generation high-energy density lithium-ion batteries because of their high reversible capacity and operating voltages. However, the LLOs always undergo structure transformation, which can result in rapid decay of capacity and voltage. Herein, LiNi0.5Mn1.5O4 (LNMO) spinel layers are constructed on the surfaces of Li1.2Mn0.54Ni0.13Co0.13O2 (LLO) particles synthesized by a coprecipitation method to form a heterostructural LLO-LNMO cathode. The LLO-LNMO cathode with 1% LNMO displays a more stable long-cycling life with 82.3% capacity retention and 0.534 V voltage drop after 400 cycles at 1 C. A capacity retention of 79.6% with a voltage decay of 0.545 V after 1000 cycles at 5 C is also achieved. A calculation based on density functional theory (DFT) also indicates that lattice oxygen can be stabilized by the LNMO spinel layer. This work demonstrates that the construction of a heterostructural LLO-LNMO cathode with an LNMO spinel layer covering the surfaces of LLO can inhibit the degradation of the layered structure of LLO, restrain the voltage attenuation, and achieve enhanced long-cycling properties for potential applications of high-performance lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI