Brain Dynamics Complexity as a Signature of Cognitive Decline in Parkinson's Disease

认知 认知功能衰退 痴呆 帕金森病 默认模式网络 心理学 神经科学 功能磁共振成像 静息状态功能磁共振成像 疾病 听力学 医学 内科学
作者
Eleonora Fiorenzato,Sadaf Moaveninejad,Luca Weis,Roberta Biundo,Angelo Antonini,Camillo Porcaro
出处
期刊:Movement Disorders [Wiley]
卷期号:39 (2): 305-317 被引量:15
标识
DOI:10.1002/mds.29678
摘要

Abstract Background Higuchi's fractal dimension (FD) captures brain dynamics complexity and may be a promising method to analyze resting‐state functional magnetic resonance imaging (fMRI) data and detect the neuronal interaction complexity underlying Parkinson's disease (PD) cognitive decline. Objectives The aim was to compare FD with a more established index of spontaneous neural activity, the fractional amplitude of low‐frequency fluctuations (fALFF), and identify through machine learning (ML) models which method could best distinguish across PD‐cognitive states, ranging from normal cognition (PD‐NC), mild cognitive impairment (PD‐MCI) to dementia (PDD). Finally, the aim was to explore correlations between fALFF and FD with clinical and cognitive PD features. Methods Among 118 PD patients age‐, sex‐, and education matched with 35 healthy controls, 52 were classified with PD‐NC, 46 with PD‐MCI, and 20 with PDD based on an extensive cognitive and clinical evaluation. fALFF and FD metrics were computed on rs‐fMRI data and used to train ML models. Results FD outperformed fALFF metrics in differentiating between PD‐cognitive states, reaching an overall accuracy of 78% (vs. 62%). PD showed increased neuronal dynamics complexity within the sensorimotor network, central executive network (CEN), and default mode network (DMN), paralleled by a reduction in spontaneous neuronal activity within the CEN and DMN, whose increased complexity was strongly linked to the presence of dementia. Further, we found that some DMN critical hubs correlated with worse cognitive performance and disease severity. Conclusions Our study indicates that PD‐cognitive decline is characterized by an altered spontaneous neuronal activity and increased temporal complexity, involving the CEN and DMN, possibly reflecting an increased segregation of these networks. Therefore, we propose FD as a prognostic biomarker of PD‐cognitive decline. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
蝴蝶变成毛毛虫完成签到,获得积分10
3秒前
yulinhai完成签到,获得积分10
3秒前
4秒前
maidida完成签到,获得积分10
4秒前
shell发布了新的文献求助80
4秒前
量子星尘发布了新的文献求助20
5秒前
gan完成签到,获得积分10
5秒前
wzf123456发布了新的文献求助10
7秒前
小月亮完成签到,获得积分10
7秒前
不以发布了新的文献求助30
8秒前
Liuuhhua完成签到,获得积分10
9秒前
10秒前
12秒前
言非离应助f1sh采纳,获得20
13秒前
正好完成签到,获得积分10
13秒前
青年才俊发布了新的文献求助10
14秒前
科研通AI6应助王挪采纳,获得10
14秒前
大模型应助毛头侠采纳,获得10
15秒前
开朗穆发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
传奇3应助不以采纳,获得10
18秒前
青年才俊发布了新的文献求助10
20秒前
Murm完成签到 ,获得积分20
20秒前
moonlightblu_完成签到,获得积分10
20秒前
科研通AI5应助外向的花花采纳,获得10
20秒前
21秒前
wzf123456完成签到,获得积分10
22秒前
无头绪完成签到,获得积分10
22秒前
开朗穆完成签到,获得积分10
23秒前
林洁佳发布了新的文献求助10
24秒前
Tong发布了新的文献求助30
24秒前
荆扉发布了新的文献求助10
25秒前
少年游完成签到,获得积分10
25秒前
汶溢完成签到,获得积分10
25秒前
科研通AI5应助微笑的水桃采纳,获得10
27秒前
小洋一生完成签到,获得积分10
28秒前
zhou完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941339
求助须知:如何正确求助?哪些是违规求助? 4207390
关于积分的说明 13077624
捐赠科研通 3986257
什么是DOI,文献DOI怎么找? 2182529
邀请新用户注册赠送积分活动 1198125
关于科研通互助平台的介绍 1110387