A multi-sensor monitoring methodology for grinding wheel wear evaluation based on INFO-SVM

支持向量机 稳健性(进化) 研磨 砂轮 噪音(视频) 计算机科学 过程(计算) 人工智能 模式识别(心理学) 工程类 机械工程 生物化学 化学 图像(数学) 基因 操作系统
作者
Linlin Wan,Zejun Chen,Xianyang Zhang,Dongdong Wen,Xiaoru Ran
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 111003-111003 被引量:16
标识
DOI:10.1016/j.ymssp.2023.111003
摘要

It's a significant challenge to accurate and efficient evaluation of grinding wheel wear. The evaluating grinding wheel wear traditional evaluation model has several weaknesses, including low accuracy, poor efficiency, and the need for a large database. To address these issues, an evaluating grinding wheel wear optimize model method is proposed based on weIghted meaN oF vectOrs optimized Support Vector Machine (INFO-SVM), and an data processing method is proposed based on Whale Optimization Algorithm to optimize Variational Mode Decomposition (WOA-VMD). Firstly, the grinding wheel wear was analyzed by grinding wheel and workpiece topography images. Secondly, the WOA-VMD data processing method has distinguished frequency bands between the grinding process and environmental noise signal, the method thereby eliminating environmental noise to enhance the signal-to-noise ratio in evaluating grinding process signals. Based on ReliefF algorithm established dataset, finally, the INFO-SVM algorithm method to evaluate grinding wheel wear has verified the robustness, effectiveness, and computational efficiency. The experimental results demonstrate the method's effectiveness in noise reduction, high accuracy, fast recognition speed, and strong robustness. Therefore, multi-sensor monitoring holds promising potential for application in the field of grinding wheel wear evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoqi发布了新的文献求助10
刚刚
执着绿草发布了新的文献求助10
3秒前
jixiaoran完成签到,获得积分10
3秒前
4秒前
笑点低关注了科研通微信公众号
5秒前
5秒前
阿坤完成签到 ,获得积分10
7秒前
蓝天应助容若采纳,获得10
7秒前
充电宝应助leez采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
小蘑菇应助刘言采纳,获得10
12秒前
12秒前
搞怪山晴发布了新的文献求助10
12秒前
14秒前
JamesPei应助直率的问筠采纳,获得10
15秒前
朻安完成签到,获得积分10
15秒前
16秒前
16秒前
17秒前
星辰大海应助黑YA采纳,获得10
17秒前
18秒前
chenhouhan发布了新的文献求助20
18秒前
19秒前
19秒前
leez发布了新的文献求助10
20秒前
哎呦你干嘛完成签到,获得积分20
20秒前
Su发布了新的文献求助10
21秒前
pluto应助独特的绮山采纳,获得10
21秒前
wanci应助星星采纳,获得10
22秒前
22秒前
cetomacrogol完成签到,获得积分10
22秒前
23秒前
感动的小懒虫完成签到,获得积分20
23秒前
23秒前
哈哈哈完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
ybybyb1213发布了新的文献求助30
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595