A multi-sensor monitoring methodology for grinding wheel wear evaluation based on INFO-SVM

支持向量机 稳健性(进化) 研磨 砂轮 噪音(视频) 计算机科学 过程(计算) 人工智能 模式识别(心理学) 工程类 机械工程 生物化学 化学 图像(数学) 基因 操作系统
作者
Linlin Wan,Zejun Chen,Xianyang Zhang,Dongdong Wen,Xiaoru Ran
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 111003-111003 被引量:16
标识
DOI:10.1016/j.ymssp.2023.111003
摘要

It's a significant challenge to accurate and efficient evaluation of grinding wheel wear. The evaluating grinding wheel wear traditional evaluation model has several weaknesses, including low accuracy, poor efficiency, and the need for a large database. To address these issues, an evaluating grinding wheel wear optimize model method is proposed based on weIghted meaN oF vectOrs optimized Support Vector Machine (INFO-SVM), and an data processing method is proposed based on Whale Optimization Algorithm to optimize Variational Mode Decomposition (WOA-VMD). Firstly, the grinding wheel wear was analyzed by grinding wheel and workpiece topography images. Secondly, the WOA-VMD data processing method has distinguished frequency bands between the grinding process and environmental noise signal, the method thereby eliminating environmental noise to enhance the signal-to-noise ratio in evaluating grinding process signals. Based on ReliefF algorithm established dataset, finally, the INFO-SVM algorithm method to evaluate grinding wheel wear has verified the robustness, effectiveness, and computational efficiency. The experimental results demonstrate the method's effectiveness in noise reduction, high accuracy, fast recognition speed, and strong robustness. Therefore, multi-sensor monitoring holds promising potential for application in the field of grinding wheel wear evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
1秒前
PhD_HanWu发布了新的文献求助10
1秒前
1秒前
Lars汉堡发布了新的文献求助10
2秒前
12135发布了新的文献求助30
2秒前
研友_VZG7GZ应助沉默红牛采纳,获得10
6秒前
怕孤单的奇异果完成签到,获得积分10
8秒前
9秒前
小蘑菇应助Lars汉堡采纳,获得10
9秒前
heher完成签到 ,获得积分10
9秒前
刘虹完成签到,获得积分20
9秒前
10秒前
万能图书馆应助酷炫灰狼采纳,获得10
11秒前
baiyeok发布了新的文献求助30
12秒前
Owen应助峰峰采纳,获得10
12秒前
研友_VZG7GZ应助fahbfafajk采纳,获得10
12秒前
13秒前
郭子仪发布了新的文献求助10
15秒前
科研通AI6应助范fan采纳,获得30
15秒前
挽月白完成签到,获得积分10
15秒前
16秒前
嘿嘿发布了新的文献求助10
16秒前
17秒前
19秒前
19秒前
hony完成签到,获得积分10
22秒前
斯文败类应助郭子仪采纳,获得30
22秒前
23秒前
Thien应助lyp采纳,获得10
23秒前
23秒前
yyanxuemin919发布了新的文献求助10
24秒前
研友_Lmb15n发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
上帝粒子应助Liu采纳,获得50
27秒前
李伟峰完成签到,获得积分10
27秒前
28秒前
wy发布了新的文献求助10
28秒前
冷酷莫言发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432