CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2346-2355 被引量:14
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
T拐拐发布了新的文献求助10
刚刚
达达利亚发布了新的文献求助10
刚刚
LYL2003发布了新的文献求助30
1秒前
鸿hhh完成签到,获得积分20
1秒前
1秒前
MSBLANK完成签到,获得积分10
1秒前
Gauss应助清风采纳,获得30
2秒前
你我的共同完成签到 ,获得积分10
3秒前
酱啊油发布了新的文献求助10
3秒前
丙烯酸树脂完成签到,获得积分10
4秒前
BB完成签到,获得积分10
4秒前
坦率的匪应助静仰星空采纳,获得10
5秒前
5秒前
actor2006完成签到,获得积分10
6秒前
zhaxiao完成签到,获得积分10
6秒前
6秒前
希望天下0贩的0应助淘淘采纳,获得10
6秒前
冰火油条虾完成签到,获得积分10
6秒前
陈逸恒发布了新的文献求助10
6秒前
大红完成签到,获得积分10
6秒前
爆米花应助应天亦采纳,获得10
7秒前
善学以致用应助echooooo采纳,获得10
7秒前
墨卿完成签到,获得积分10
7秒前
uraylong发布了新的文献求助10
8秒前
9秒前
达达利亚完成签到,获得积分10
9秒前
111发布了新的文献求助30
9秒前
ponytail完成签到,获得积分10
10秒前
榕小蜂完成签到 ,获得积分10
10秒前
10秒前
11秒前
wdy111应助Mila采纳,获得20
11秒前
hahhh7发布了新的文献求助10
11秒前
11秒前
科研通AI5应助huyuan采纳,获得10
12秒前
冰西瓜完成签到 ,获得积分0
12秒前
酱啊油完成签到,获得积分10
12秒前
charles发布了新的文献求助10
14秒前
LYL2003完成签到,获得积分10
14秒前
1231完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653