CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2346-2355 被引量:9
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助勤恳的语蓉采纳,获得10
1秒前
hmhu发布了新的文献求助10
2秒前
纪煜祺发布了新的文献求助10
3秒前
454完成签到 ,获得积分10
3秒前
3秒前
Lucas应助田埂追星人采纳,获得10
3秒前
junyi完成签到,获得积分20
4秒前
4秒前
6秒前
nozero应助潇湘夜雨采纳,获得30
7秒前
7秒前
7秒前
8秒前
NexusExplorer应助耿肖肖采纳,获得10
10秒前
解觅荷完成签到,获得积分10
11秒前
kanghyeonwu完成签到,获得积分20
12秒前
germini99发布了新的文献求助10
12秒前
12秒前
lwwwl发布了新的文献求助10
13秒前
田様应助遥感小虫采纳,获得10
14秒前
田埂追星人完成签到,获得积分20
14秒前
可爱的函函应助有的没的采纳,获得10
16秒前
16秒前
18秒前
19秒前
20秒前
知性的千秋发布了新的文献求助100
22秒前
germini99完成签到,获得积分20
23秒前
hyominhsu发布了新的文献求助10
23秒前
24秒前
454发布了新的文献求助10
24秒前
25秒前
遥感小虫发布了新的文献求助10
26秒前
领导范儿应助Marine采纳,获得10
26秒前
呆萌棒棒糖完成签到,获得积分10
28秒前
RAW完成签到 ,获得积分10
30秒前
务实寒天完成签到,获得积分10
31秒前
32秒前
YaHaa完成签到,获得积分10
32秒前
小彤发布了新的文献求助50
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669843
求助须知:如何正确求助?哪些是违规求助? 3227318
关于积分的说明 9774958
捐赠科研通 2937434
什么是DOI,文献DOI怎么找? 1609349
邀请新用户注册赠送积分活动 760256
科研通“疑难数据库(出版商)”最低求助积分说明 735765