CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (6): 2346-2355 被引量:21
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫薰完成签到,获得积分10
刚刚
CodeCraft应助大气的人雄采纳,获得10
2秒前
叕叕完成签到,获得积分10
3秒前
senli2018发布了新的文献求助10
6秒前
7秒前
丘比特应助莓莓采纳,获得20
9秒前
锦瑟完成签到 ,获得积分10
9秒前
Talha发布了新的文献求助10
11秒前
11秒前
酥瓜完成签到 ,获得积分10
13秒前
呆萌雁玉完成签到,获得积分10
13秒前
学术laji发布了新的文献求助10
16秒前
healthy发布了新的文献求助10
17秒前
17秒前
元舒甜发布了新的文献求助10
17秒前
19秒前
20秒前
CodeCraft应助weiyi采纳,获得10
20秒前
20秒前
GaN完成签到,获得积分20
21秒前
22秒前
22秒前
Llllllllily完成签到,获得积分10
22秒前
受伤问凝完成签到 ,获得积分10
22秒前
lili发布了新的文献求助10
23秒前
SCI又中了发布了新的文献求助10
24秒前
25秒前
南汐寒笙关注了科研通微信公众号
25秒前
26秒前
GaN发布了新的文献求助10
26秒前
犬来八荒发布了新的文献求助10
26秒前
乐乐发布了新的文献求助30
27秒前
dmq发布了新的文献求助10
27秒前
28秒前
二丙发布了新的文献求助30
29秒前
30秒前
weiyi完成签到,获得积分10
31秒前
wyz完成签到,获得积分10
31秒前
32秒前
杨武天一发布了新的文献求助10
32秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344792
求助须知:如何正确求助?哪些是违规求助? 4479975
关于积分的说明 13944959
捐赠科研通 4377204
什么是DOI,文献DOI怎么找? 2405147
邀请新用户注册赠送积分活动 1397687
关于科研通互助平台的介绍 1370008