Open-set domain adaptation for scene classification using multi-adversarial learning

对抗制 域适应 计算机科学 人工智能 适应(眼睛) 集合(抽象数据类型) 领域(数学分析) 开放集 计算机视觉 模式识别(心理学) 机器学习 分类器(UML) 数学 心理学 数学分析 离散数学 神经科学 程序设计语言
作者
Juepeng Zheng,Yibin Wen,Mengxuan Chen,Shuai Yuan,Weijia Li,Yi Zhao,Wenzhao Wu,Lixian Zhang,Runmin Dong,Haohuan Fu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 245-260 被引量:11
标识
DOI:10.1016/j.isprsjprs.2024.01.015
摘要

Domain adaptation methods are able to transfer knowledge across different domains, tackling multi-sensor, multi-temporal or cross-regional remote sensing scenarios as they do not rely on labels or annotations in the target domain. However, most of the previous studies have focused on closed-set domain adaptation, based on the assumption that the source and target domains share identical class labels. Real-world scenarios are typically more complex, and the model could potentially encounter novel classes that are not previously included in the source domain, commonly referred to as “unknown” classes. Here we investigate the open-set domain adaptation scenario in the field of remote sensing scene classification, where there is a partial overlap between the label space of the target domain and that of the source domain. To deal with this problem, we propose a novel open-set domain adaptation method for scene classification using remote sensing images, which is named Multi-Adversarial Open-Set Domain Adaptation Network (MAOSDAN). Our proposed MAOSDAN consists of three main components. First, we employ an attention-aware Open Set BackPropagation (OSBP) to better distinguish the “unknown” and “known” samples for the target domain. Then, an auxiliary adversarial learning is designed for mitigating the negative transfer effect that arises from forcefully aligning the “unknown” target sample in network training. Finally, we adopt an adaptive entropy suppression to increase the probability of samples and prevent some samples from being mistakenly classified. Our proposed MAOSDAN achieves an average score of 75.07% in three publicly available remote sensing datasets, which significantly outperforms other open-set domain adaptation algorithms by attaining 4.52∼17.15%. In addition, MAOSDAN surpasses the baseline deep learning model with 18.12% improvement. A comprehensive experimental evaluation demonstrates that our MAOSDAN shows promising prospects in addressing practical and general domain adaptation scenarios, especially in scenarios where the label set of the source domain is a subset of the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助axiba采纳,获得20
1秒前
感谢秧秧转发科研通微信,获得积分50
1秒前
彼得大帝完成签到,获得积分10
1秒前
1秒前
2秒前
脑洞疼应助Una采纳,获得10
2秒前
3秒前
3秒前
感谢生椰拿铁转发科研通微信,获得积分50
3秒前
海盐芝士完成签到,获得积分10
4秒前
学术通zzz应助万木采纳,获得20
4秒前
4秒前
忐忑的老虎完成签到,获得积分10
5秒前
大學朝陽完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
HAHAHA完成签到,获得积分10
6秒前
感谢酷酷小天鹅转发科研通微信,获得积分50
6秒前
谭谨川完成签到,获得积分10
6秒前
迎夏应助慕子默采纳,获得50
6秒前
2335538742发布了新的文献求助10
6秒前
慕青应助yuyu采纳,获得10
7秒前
研友_VZG7GZ应助one采纳,获得10
7秒前
鳗鱼雪莲发布了新的文献求助10
7秒前
星辰大海应助song采纳,获得10
7秒前
stop here发布了新的文献求助30
8秒前
fanbuxiiii完成签到,获得积分10
8秒前
花玥鹿完成签到,获得积分10
9秒前
心碎小文完成签到,获得积分20
9秒前
9秒前
Kyrene完成签到,获得积分10
9秒前
mmyhn发布了新的文献求助10
10秒前
azhou176完成签到,获得积分10
10秒前
可爱的函函应助Chuang采纳,获得10
10秒前
10秒前
感谢欣慰的以蕊转发科研通微信,获得积分50
10秒前
诚心谷南发布了新的文献求助10
10秒前
changaipei发布了新的文献求助10
11秒前
李爱国应助迷人问兰采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951271
求助须知:如何正确求助?哪些是违规求助? 3496677
关于积分的说明 11083785
捐赠科研通 3227103
什么是DOI,文献DOI怎么找? 1784263
邀请新用户注册赠送积分活动 868293
科研通“疑难数据库(出版商)”最低求助积分说明 801102