Open-set domain adaptation for scene classification using multi-adversarial learning

对抗制 域适应 计算机科学 人工智能 适应(眼睛) 集合(抽象数据类型) 领域(数学分析) 开放集 计算机视觉 模式识别(心理学) 机器学习 分类器(UML) 数学 心理学 数学分析 离散数学 神经科学 程序设计语言
作者
Juepeng Zheng,Yan Wen,Mengxuan Chen,Shuai Yuan,Weijia Li,Yuchao Zhao,Wencheng Wu,Lixian Zhang,Runmin Dong,Haohuan Fu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:208: 245-260
标识
DOI:10.1016/j.isprsjprs.2024.01.015
摘要

Domain adaptation methods are able to transfer knowledge across different domains, tackling multi-sensor, multi-temporal or cross-regional remote sensing scenarios as they do not rely on labels or annotations in the target domain. However, most of the previous studies have focused on closed-set domain adaptation, based on the assumption that the source and target domains share identical class labels. Real-world scenarios are typically more complex, and the model could potentially encounter novel classes that are not previously included in the source domain, commonly referred to as “unknown” classes. Here we investigate the open-set domain adaptation scenario in the field of remote sensing scene classification, where there is a partial overlap between the label space of the target domain and that of the source domain. To deal with this problem, we propose a novel open-set domain adaptation method for scene classification using remote sensing images, which is named Multi-Adversarial Open-Set Domain Adaptation Network (MAOSDAN). Our proposed MAOSDAN consists of three main components. First, we employ an attention-aware Open Set BackPropagation (OSBP) to better distinguish the “unknown” and “known” samples for the target domain. Then, an auxiliary adversarial learning is designed for mitigating the negative transfer effect that arises from forcefully aligning the “unknown” target sample in network training. Finally, we adopt an adaptive entropy suppression to increase the probability of samples and prevent some samples from being mistakenly classified. Our proposed MAOSDAN achieves an average score of 75.07% in three publicly available remote sensing datasets, which significantly outperforms other open-set domain adaptation algorithms by attaining 4.52∼17.15%. In addition, MAOSDAN surpasses the baseline deep learning model with 18.12% improvement. A comprehensive experimental evaluation demonstrates that our MAOSDAN shows promising prospects in addressing practical and general domain adaptation scenarios, especially in scenarios where the label set of the source domain is a subset of the target domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助传统的盈采纳,获得10
刚刚
yimingzhangbp发布了新的文献求助10
1秒前
嗯哼举报刻苦大西瓜求助涉嫌违规
1秒前
1秒前
小绵羊发布了新的文献求助10
3秒前
666发布了新的文献求助10
3秒前
DueDue0327发布了新的文献求助10
4秒前
张泡泡完成签到,获得积分10
4秒前
kiki完成签到 ,获得积分10
4秒前
wst完成签到,获得积分10
4秒前
5秒前
调研昵称发布了新的文献求助30
5秒前
5秒前
柳云风发布了新的文献求助10
5秒前
萝卜花1968完成签到,获得积分10
5秒前
天天天蓝完成签到,获得积分10
5秒前
考拉布拉完成签到 ,获得积分10
5秒前
6秒前
科研通AI2S应助lxl1996采纳,获得10
7秒前
小牛牛妈咪完成签到,获得积分10
9秒前
Timothee发布了新的文献求助100
9秒前
gao完成签到,获得积分20
10秒前
10秒前
ZZzz发布了新的文献求助10
10秒前
11秒前
wst发布了新的文献求助10
11秒前
11秒前
Tonnyjing应助喜悦剑通采纳,获得10
12秒前
悦耳的城完成签到,获得积分10
12秒前
bowl完成签到 ,获得积分10
13秒前
111发布了新的文献求助10
13秒前
oilmelech发布了新的文献求助10
15秒前
无限猕猴桃完成签到 ,获得积分10
16秒前
17秒前
小蘑菇应助Dudu采纳,获得30
18秒前
19秒前
花花呀完成签到 ,获得积分10
19秒前
贺儿发布了新的文献求助10
19秒前
Fa完成签到,获得积分10
21秒前
sissiarno应助ycliu采纳,获得30
22秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083