Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images

计算机科学 分割 直方图 人工智能 水准点(测量) 图像分割 算法 钥匙(锁) 模式识别(心理学) 图像(数学) 计算机安全 大地测量学 地理
作者
Hongliang Guo,Mingyang Li,Hanbo Liu,Xiao Chen,Zhiqiang Cheng,Xiaohua Li,Helong Yu,Qiuxiang He
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:168: 107769-107769 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107769
摘要

Breast cancer poses a significant risk to women's health, and it is essential to provide proper diagnostic support. Medical image processing technology is a key component of all supporting diagnostic techniques, with Image Segmentation (IS) being one of its primary steps. Among various methods, Multilevel Image Segmentation (MIS) is considered one of the most effective and straightforward approaches. Many researchers have attempted to improve the quality of image segmentation by combining different metaheuristic algorithms with MIS. However, these methods often suffer from issues such as low convergence accuracy and a proclivity for converging towards Local Optima (LO). To overcome these challenges, this study introduces an integrated approach that combines the Salp Swarm Algorithm (SSA), Slime Mould Algorithm (SMA) and Differential Evolution (DE) algorithm. In this manuscript, we introduce an innovative hybrid MIS model termed SDSSA, which leverages elements from the SSA, SMA and DE algorithms. The SDSSA model fundamentally relies on non-local means 2D histogram and 2D Kapur's entropy. To evaluate the proposed method effectively, we compare it initially with similar algorithms using the IEEE CEC2014 benchmark functions. The SDSSA showcases enhanced convergence velocity and precision relative to similar algorithms. Furthermore, this paper proposes an excellent MIS method. Subsequently, IS experiments were conducted separately at both low and high threshold levels. The test results demonstrate that the segmentation outcomes of MIS, at both low and high threshold levels, outperform other methods. This validates SDSSA as a superior segmentation technique that provides practical assistance for future research in breast cancer pathology image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hll完成签到,获得积分10
刚刚
1秒前
maox1aoxin应助美丽依波采纳,获得30
2秒前
小二郎应助调皮的若剑采纳,获得10
3秒前
vivian26发布了新的文献求助10
4秒前
23完成签到,获得积分10
4秒前
一颗椰子糖耶完成签到,获得积分20
5秒前
香蕉觅云应助yyy采纳,获得10
6秒前
雁夜完成签到,获得积分10
6秒前
Hello应助茉莉采纳,获得10
7秒前
幸福大白发布了新的文献求助10
8秒前
8秒前
11秒前
lige完成签到 ,获得积分10
13秒前
hehe发布了新的文献求助10
14秒前
DAN_完成签到,获得积分10
15秒前
bingbing完成签到,获得积分10
16秒前
16秒前
ranqi给ranqi的求助进行了留言
16秒前
17秒前
热情紫丝发布了新的文献求助20
17秒前
cywzhcr发布了新的文献求助10
18秒前
19秒前
子车茗应助liyliu1采纳,获得10
19秒前
20秒前
22秒前
焱焱发布了新的文献求助10
23秒前
zdl完成签到,获得积分10
25秒前
Hello应助钱砖家采纳,获得10
25秒前
26秒前
科研通AI2S应助饿m采纳,获得10
28秒前
畅快的文龙完成签到,获得积分10
28秒前
cywzhcr完成签到,获得积分10
29秒前
悦耳问晴完成签到,获得积分10
29秒前
29秒前
29秒前
杀出个黎明举报766求助涉嫌违规
30秒前
lin完成签到,获得积分10
30秒前
orixero应助陌陌采纳,获得10
31秒前
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012