Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images

计算机科学 分割 直方图 人工智能 水准点(测量) 图像分割 算法 钥匙(锁) 模式识别(心理学) 图像(数学) 计算机安全 大地测量学 地理
作者
Hongliang Guo,Mingyang Li,Hanbo Liu,Xiao Chen,Zhiqiang Cheng,Xiaohua Li,Helong Yu,Qiuxiang He
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107769-107769 被引量:15
标识
DOI:10.1016/j.compbiomed.2023.107769
摘要

Breast cancer poses a significant risk to women's health, and it is essential to provide proper diagnostic support. Medical image processing technology is a key component of all supporting diagnostic techniques, with Image Segmentation (IS) being one of its primary steps. Among various methods, Multilevel Image Segmentation (MIS) is considered one of the most effective and straightforward approaches. Many researchers have attempted to improve the quality of image segmentation by combining different metaheuristic algorithms with MIS. However, these methods often suffer from issues such as low convergence accuracy and a proclivity for converging towards Local Optima (LO). To overcome these challenges, this study introduces an integrated approach that combines the Salp Swarm Algorithm (SSA), Slime Mould Algorithm (SMA) and Differential Evolution (DE) algorithm. In this manuscript, we introduce an innovative hybrid MIS model termed SDSSA, which leverages elements from the SSA, SMA and DE algorithms. The SDSSA model fundamentally relies on non-local means 2D histogram and 2D Kapur's entropy. To evaluate the proposed method effectively, we compare it initially with similar algorithms using the IEEE CEC2014 benchmark functions. The SDSSA showcases enhanced convergence velocity and precision relative to similar algorithms. Furthermore, this paper proposes an excellent MIS method. Subsequently, IS experiments were conducted separately at both low and high threshold levels. The test results demonstrate that the segmentation outcomes of MIS, at both low and high threshold levels, outperform other methods. This validates SDSSA as a superior segmentation technique that provides practical assistance for future research in breast cancer pathology image processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助WNL采纳,获得10
刚刚
Lazzaro发布了新的文献求助10
1秒前
1秒前
HAHAHA完成签到,获得积分10
2秒前
淡淡的山芙完成签到,获得积分10
3秒前
3秒前
3秒前
Ava应助zhhha采纳,获得10
3秒前
HAHAHA发布了新的文献求助10
5秒前
yyyyyxy完成签到,获得积分10
6秒前
黑黑黑完成签到,获得积分10
6秒前
欧阳惜筠发布了新的文献求助10
6秒前
Gigi完成签到,获得积分10
7秒前
善良的道消完成签到,获得积分20
7秒前
7秒前
johnny发布了新的文献求助10
8秒前
静oo完成签到,获得积分10
8秒前
wanci应助哭泣的煎饼采纳,获得10
10秒前
10秒前
科研通AI2S应助dongbei采纳,获得10
10秒前
11秒前
12秒前
kkk完成签到,获得积分10
12秒前
13秒前
13秒前
棒棒完成签到,获得积分20
14秒前
WNL发布了新的文献求助10
14秒前
wanci应助苗条的微笑采纳,获得10
15秒前
15秒前
16秒前
许十五发布了新的文献求助10
16秒前
17秒前
17秒前
jmei完成签到,获得积分10
17秒前
17秒前
yznfly应助机灵冥王星采纳,获得30
17秒前
19秒前
sensen发布了新的文献求助50
19秒前
君陌完成签到,获得积分10
19秒前
英姑应助111采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785