A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes

高斯过程 高斯随机场 高斯分布 维数之咒 克里金 计算机科学 鉴定(生物学) 高斯滤波器 数学 算法 数学优化 应用数学 人工智能 机器学习 物理 植物 量子力学 生物
作者
Menghao Ping,Xinyu Jia,Costas Papadimitriou,Xu Han,Chao Jiang,Wang‐Ji Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 110968-110968 被引量:1
标识
DOI:10.1016/j.ymssp.2023.110968
摘要

Non-Gaussian processes are frequently encountered in engineering problems, posing a challenge when it comes to identification. The main challenge in the identification arises from the fact that a non-Gaussian process can be treated as a collection of infinite dimensional non-Gaussian variables. The application of the hierarchical Bayesian modeling (HBM) framework is constrained due to the inherent complexity of dimensionality and non-Gaussian characteristics associated with these variables. To tackle the issue of dimensionality, the improved orthogonal series expansion (iOSE) representing a non-Gaussian process by time functions with non-Gaussian coefficients, which are readily obtained from discretizing the process at some specific time points, is introduced within the HBM framework. In particular, the iOSE is embedded to convert the identification of a non-Gaussian process into a finite number of non-Gaussian coefficients. Regarding their non-Gaussian characteristics, polynomial chaos expansion (PCE) is used to quantify the uncertainty of the non-Gaussian coefficients with parameters in PCE treated as hyper parameters to be estimated by the HBM framework. The proposed framework is applicable to the identification of both stationary and nonstationary non-Gaussian processes. The effectiveness of non-Gaussian process quantification by the proposed framework is demonstrated using simulated data of a non-stationary extreme value process. The applicability of this approach for non-Gaussian process identification is validated by accurately identifying a stochastic load in a structural dynamic problem. Furthermore, it is successfully applied to the reconstruction of random mode shapes of a building arising from different environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
道客郭完成签到,获得积分10
1秒前
2秒前
小蘑菇应助喵喵采纳,获得10
2秒前
小马完成签到,获得积分20
2秒前
2秒前
刘小孩发布了新的文献求助20
4秒前
林子应助友好羊采纳,获得10
4秒前
5秒前
情怀应助lisa采纳,获得10
5秒前
小马发布了新的文献求助10
6秒前
6秒前
自强不息完成签到,获得积分10
6秒前
贪玩路灯发布了新的文献求助10
8秒前
善学以致用应助甜蜜夏山采纳,获得10
9秒前
傅三毒发布了新的文献求助10
10秒前
mayuzumi完成签到,获得积分20
11秒前
LiHaodong发布了新的文献求助10
11秒前
12秒前
13秒前
科研通AI5应助章建采纳,获得20
13秒前
自由大象完成签到,获得积分10
14秒前
科研通AI5应助10086wm采纳,获得10
14秒前
14秒前
15秒前
李健应助Juvigate采纳,获得10
15秒前
科目三应助不敢装睡采纳,获得100
15秒前
dochuang发布了新的文献求助10
16秒前
汉堡包应助司忆采纳,获得10
16秒前
17秒前
17秒前
zzz完成签到,获得积分10
18秒前
雨天有伞完成签到,获得积分10
18秒前
19秒前
向阳花开发布了新的文献求助10
21秒前
腐殖质发布了新的文献求助10
21秒前
21秒前
科研通AI5应助5U采纳,获得10
22秒前
大个应助LiHaodong采纳,获得10
22秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479266
求助须知:如何正确求助?哪些是违规求助? 3070006
关于积分的说明 9116103
捐赠科研通 2761731
什么是DOI,文献DOI怎么找? 1515477
邀请新用户注册赠送积分活动 700958
科研通“疑难数据库(出版商)”最低求助积分说明 699931