A hierarchical Bayesian modeling framework for identification of Non-Gaussian processes

高斯过程 高斯随机场 高斯分布 维数之咒 克里金 计算机科学 鉴定(生物学) 高斯滤波器 数学 算法 数学优化 应用数学 人工智能 机器学习 物理 植物 量子力学 生物
作者
Menghao Ping,Xinyu Jia,Costas Papadimitriou,Xu Han,Chao Jiang,Wang‐Ji Yan
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 110968-110968 被引量:1
标识
DOI:10.1016/j.ymssp.2023.110968
摘要

Non-Gaussian processes are frequently encountered in engineering problems, posing a challenge when it comes to identification. The main challenge in the identification arises from the fact that a non-Gaussian process can be treated as a collection of infinite dimensional non-Gaussian variables. The application of the hierarchical Bayesian modeling (HBM) framework is constrained due to the inherent complexity of dimensionality and non-Gaussian characteristics associated with these variables. To tackle the issue of dimensionality, the improved orthogonal series expansion (iOSE) representing a non-Gaussian process by time functions with non-Gaussian coefficients, which are readily obtained from discretizing the process at some specific time points, is introduced within the HBM framework. In particular, the iOSE is embedded to convert the identification of a non-Gaussian process into a finite number of non-Gaussian coefficients. Regarding their non-Gaussian characteristics, polynomial chaos expansion (PCE) is used to quantify the uncertainty of the non-Gaussian coefficients with parameters in PCE treated as hyper parameters to be estimated by the HBM framework. The proposed framework is applicable to the identification of both stationary and nonstationary non-Gaussian processes. The effectiveness of non-Gaussian process quantification by the proposed framework is demonstrated using simulated data of a non-stationary extreme value process. The applicability of this approach for non-Gaussian process identification is validated by accurately identifying a stochastic load in a structural dynamic problem. Furthermore, it is successfully applied to the reconstruction of random mode shapes of a building arising from different environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助Judy采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
852应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
YamDaamCaa应助科研通管家采纳,获得30
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
YJc发布了新的文献求助10
2秒前
2秒前
华仔应助虚幻的涵柏采纳,获得10
2秒前
2秒前
yookia应助火星上黎云采纳,获得10
2秒前
随风完成签到 ,获得积分10
2秒前
2秒前
安沐发布了新的文献求助10
3秒前
重要小懒虫完成签到,获得积分10
4秒前
xiaolong0325ly完成签到,获得积分10
4秒前
顺心的皮卡丘完成签到 ,获得积分10
4秒前
5秒前
wuwuhu完成签到,获得积分10
5秒前
在水一方应助董董采纳,获得10
7秒前
勤恳的仰发布了新的文献求助10
7秒前
善学以致用应助满满采纳,获得10
7秒前
7秒前
8秒前
香蕉觅云应助iuu采纳,获得10
8秒前
卡卡可可发布了新的文献求助10
8秒前
8秒前
顾矜应助激动的从霜采纳,获得10
8秒前
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111