A multi-scale SOC estimation method for lithium-ion batteries incorporating expansion force

均方误差 荷电状态 电压 计算机科学 采样(信号处理) 电池(电) 工程类 数学 统计 功率(物理) 电气工程 探测器 电信 物理 量子力学
作者
Junyi Zhao,Zhiyong Hu,Hu Wang,Kun Yu,Wenhao Zou,Tingrui Pan,Lei Mao
出处
期刊:Journal of energy storage [Elsevier]
卷期号:82: 110481-110481 被引量:6
标识
DOI:10.1016/j.est.2024.110481
摘要

Electric vehicles (EVs) have become a viable alternative to fuel vehicles, and accurate State of Charge (SOC) estimation of the lithium-ion battery is the key to guarantee EVs' safe operation. However, small data sampling interval like 1 s is usually required for exiting SOC estimation techniques, which cannot be achieved in practical EVs operation scenarios. This paper proposes a novel SOC evaluation method through the fusion of expansion force with voltage and current measurements. Specifically, long-term estimation (i.e., global trend) of SOC are established by extracting information from expansion force and voltage data with long short-term memory (LSTM) algorithm, while short-term estimation (i.e., local variation) of SOC are obtained by extracting information from current and voltage measurements with Support Vector Regression (SVR). After that, long-term and short-term (i.e. multi-scale) SOC estimations are fused to provide final SOC estimation. Various test data under different driving profiles are utilized to validate the proposed method, including NEDC, and results are compared to those from widely used SOC estimation techniques like LSTM. Results demonstrate that with sampling interval increases from 1 s to 10s, the multi-scale SOC estimation method can maintain maximum absolute error (ME) less than 2.84 %, while mean absolute error (MAE) changes from 0.32 % to 0.48 % and root mean squared error (RMSE) changes from 0.44 % to 0.64 %. It demonstrates that the proposed method can effectively alleviate the dependence on small data sampling interval, thus can provide accurate SOC estimation with various sampling intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助很在乎采纳,获得10
1秒前
KK发布了新的文献求助10
1秒前
hljhhh完成签到,获得积分20
2秒前
白桃战士发布了新的文献求助10
2秒前
hangli发布了新的文献求助10
2秒前
郝宝真发布了新的文献求助10
2秒前
2秒前
哈哈哈完成签到,获得积分10
2秒前
腼腆的乐珍完成签到 ,获得积分10
3秒前
种一棵星星完成签到,获得积分10
3秒前
bo4完成签到,获得积分10
3秒前
自行输入昵称完成签到,获得积分10
3秒前
星辰大海应助左丘傲菡采纳,获得10
3秒前
aaa完成签到,获得积分10
3秒前
脆香可丽饼应助LYY采纳,获得30
3秒前
afar完成签到 ,获得积分10
4秒前
qwer0802发布了新的文献求助10
5秒前
不爱吃姜完成签到,获得积分10
5秒前
拼搏雨竹完成签到 ,获得积分10
6秒前
破晓星发布了新的文献求助150
6秒前
7秒前
sunshine发布了新的文献求助10
7秒前
8秒前
Akim应助铃儿响叮党采纳,获得10
8秒前
爆米花应助月出采纳,获得10
8秒前
英俊的铭应助愚公采纳,获得10
9秒前
9秒前
SciGPT应助冷静的荔枝采纳,获得10
9秒前
李师傅完成签到 ,获得积分10
10秒前
李健的小迷弟应助顷梦采纳,获得10
10秒前
苏安泠完成签到 ,获得积分10
11秒前
万能图书馆应助GGWW采纳,获得10
11秒前
Jasper应助辣味锅包肉采纳,获得10
11秒前
11秒前
skyline发布了新的文献求助20
12秒前
顾矜应助增缩减扩采纳,获得10
12秒前
12秒前
共享精神应助恶魔强采纳,获得10
12秒前
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169845
求助须知:如何正确求助?哪些是违规求助? 2820912
关于积分的说明 7932586
捐赠科研通 2481300
什么是DOI,文献DOI怎么找? 1321727
科研通“疑难数据库(出版商)”最低求助积分说明 633347
版权声明 602561