HMS-RRT: A novel hybrid multi-strategy rapidly-exploring random tree algorithm for multi-robot collaborative exploration in unknown environments

计算机科学 沃罗诺图 质心 随机树 机器人 算法 稳健性(进化) 分拆(数论) 人工智能 数据挖掘 运动规划 数学 生物化学 化学 几何学 组合数学 基因
作者
Yuming Ning,Tuanjie Li,Cong Ye,Wenqian Du,Yan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123238-123238 被引量:1
标识
DOI:10.1016/j.eswa.2024.123238
摘要

In this paper, we proposed a novel multi-robot collaborative exploration method to improve the efficiency and robustness of multi-robot exploration in unknown environments. Firstly, a novel frontier detection algorithm based on hybrid multi-strategy rapidly-exploring random tree (HMS-RRT) is proposed, which is composed of an adaptive incremental distance strategy, a subregion sampling strategy and a greedy frontier-based exploration strategy. To improve the frontier detection performance of the algorithm, we adopt the Voronoi diagram to continuously partition the explored region, and dynamically adjust the incremental distance according to the density of obstacles in the subregions. To avoid the algorithm is trapped in the local optimum, we use Gaussian distribution to calculate the sampling probability in each subregion, so that the algorithm tends to sample in the subregion with lower crowded level of nodes and cover the unexplored regions quickly. Secondly, we introduce the greedy frontier-based exploration strategy to explore all Voronoi polygons in turn and refine the search results, meanwhile, the centroid of each frontier region is extracted as the exploration target point. Then, a multi-robot task assignment strategy based on improved market mechanism is introduced to dynamically assign the exploration target points to each robot, and the map-merging algorithm is used in the exploration process to merge several local maps in real-time. Finally, an experimental testing platform is developed based on Robot Operating System (ROS) and a series of experiments are carried out. The results show that our method can improve the efficiency and reliability of multi-robot exploration in both the simulations and the prototype experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果瑞宁完成签到,获得积分10
刚刚
1秒前
机智小虾米完成签到,获得积分20
1秒前
goldenfleece完成签到,获得积分10
2秒前
科研通AI2S应助学者采纳,获得10
2秒前
小杨完成签到,获得积分10
3秒前
sutharsons应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Eric_Lee2000应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
王子完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
6秒前
诚心的大碗应助明理念桃采纳,获得20
6秒前
7秒前
meng完成签到,获得积分10
7秒前
学者完成签到,获得积分10
7秒前
英俊的铭应助愉快盼曼采纳,获得10
8秒前
8秒前
小媛完成签到 ,获得积分10
9秒前
学术小白完成签到,获得积分20
9秒前
赘婿应助xiaomeng采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
9秒前
清新的苑博完成签到,获得积分10
9秒前
10秒前
果果瑞宁发布了新的文献求助10
11秒前
阿美发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808