HMS-RRT: A novel hybrid multi-strategy rapidly-exploring random tree algorithm for multi-robot collaborative exploration in unknown environments

计算机科学 沃罗诺图 质心 随机树 机器人 算法 稳健性(进化) 分拆(数论) 人工智能 数据挖掘 运动规划 数学 生物化学 化学 几何学 组合数学 基因
作者
Yuming Ning,Tuanjie Li,Cong Ye,Wenqian Du,Yan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123238-123238 被引量:1
标识
DOI:10.1016/j.eswa.2024.123238
摘要

In this paper, we proposed a novel multi-robot collaborative exploration method to improve the efficiency and robustness of multi-robot exploration in unknown environments. Firstly, a novel frontier detection algorithm based on hybrid multi-strategy rapidly-exploring random tree (HMS-RRT) is proposed, which is composed of an adaptive incremental distance strategy, a subregion sampling strategy and a greedy frontier-based exploration strategy. To improve the frontier detection performance of the algorithm, we adopt the Voronoi diagram to continuously partition the explored region, and dynamically adjust the incremental distance according to the density of obstacles in the subregions. To avoid the algorithm is trapped in the local optimum, we use Gaussian distribution to calculate the sampling probability in each subregion, so that the algorithm tends to sample in the subregion with lower crowded level of nodes and cover the unexplored regions quickly. Secondly, we introduce the greedy frontier-based exploration strategy to explore all Voronoi polygons in turn and refine the search results, meanwhile, the centroid of each frontier region is extracted as the exploration target point. Then, a multi-robot task assignment strategy based on improved market mechanism is introduced to dynamically assign the exploration target points to each robot, and the map-merging algorithm is used in the exploration process to merge several local maps in real-time. Finally, an experimental testing platform is developed based on Robot Operating System (ROS) and a series of experiments are carried out. The results show that our method can improve the efficiency and reliability of multi-robot exploration in both the simulations and the prototype experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冲冲冲发布了新的文献求助10
1秒前
under完成签到,获得积分10
1秒前
轻松的鑫完成签到,获得积分10
1秒前
zoe完成签到,获得积分10
3秒前
内向的跳跳糖完成签到,获得积分10
4秒前
北风完成签到,获得积分10
4秒前
华仔应助NMR采纳,获得10
4秒前
CatC完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助20
5秒前
yciDo完成签到,获得积分10
5秒前
6秒前
6秒前
ll完成签到 ,获得积分10
6秒前
大肥羊完成签到,获得积分10
7秒前
XuNan完成签到,获得积分10
7秒前
7秒前
不来也不去完成签到 ,获得积分10
7秒前
贪玩鸵鸟发布了新的文献求助20
7秒前
8秒前
8秒前
bjx完成签到,获得积分20
9秒前
大个应助沙糖桔采纳,获得10
9秒前
9秒前
称心的新之完成签到,获得积分10
10秒前
youshower完成签到,获得积分10
10秒前
独特山彤完成签到,获得积分10
10秒前
chen完成签到,获得积分10
11秒前
英姑应助uu采纳,获得10
11秒前
TRY发布了新的文献求助30
11秒前
Yzy发布了新的文献求助10
11秒前
11秒前
太叔明辉完成签到,获得积分10
12秒前
bjx发布了新的文献求助10
12秒前
烟花应助chen采纳,获得10
12秒前
害羞的墨镜完成签到,获得积分10
12秒前
13秒前
aowuao完成签到,获得积分10
13秒前
aikeyab完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977