HMS-RRT: A novel hybrid multi-strategy rapidly-exploring random tree algorithm for multi-robot collaborative exploration in unknown environments

计算机科学 沃罗诺图 质心 随机树 机器人 算法 稳健性(进化) 分拆(数论) 人工智能 数据挖掘 运动规划 数学 生物化学 化学 几何学 组合数学 基因
作者
Yuming Ning,Tuanjie Li,Cong Ye,Wenqian Du,Yan Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123238-123238 被引量:1
标识
DOI:10.1016/j.eswa.2024.123238
摘要

In this paper, we proposed a novel multi-robot collaborative exploration method to improve the efficiency and robustness of multi-robot exploration in unknown environments. Firstly, a novel frontier detection algorithm based on hybrid multi-strategy rapidly-exploring random tree (HMS-RRT) is proposed, which is composed of an adaptive incremental distance strategy, a subregion sampling strategy and a greedy frontier-based exploration strategy. To improve the frontier detection performance of the algorithm, we adopt the Voronoi diagram to continuously partition the explored region, and dynamically adjust the incremental distance according to the density of obstacles in the subregions. To avoid the algorithm is trapped in the local optimum, we use Gaussian distribution to calculate the sampling probability in each subregion, so that the algorithm tends to sample in the subregion with lower crowded level of nodes and cover the unexplored regions quickly. Secondly, we introduce the greedy frontier-based exploration strategy to explore all Voronoi polygons in turn and refine the search results, meanwhile, the centroid of each frontier region is extracted as the exploration target point. Then, a multi-robot task assignment strategy based on improved market mechanism is introduced to dynamically assign the exploration target points to each robot, and the map-merging algorithm is used in the exploration process to merge several local maps in real-time. Finally, an experimental testing platform is developed based on Robot Operating System (ROS) and a series of experiments are carried out. The results show that our method can improve the efficiency and reliability of multi-robot exploration in both the simulations and the prototype experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zh完成签到,获得积分10
1秒前
1212发布了新的文献求助10
1秒前
肖遥完成签到,获得积分10
1秒前
无花果应助Bennett采纳,获得10
1秒前
妮儿发布了新的文献求助10
1秒前
小二点发布了新的文献求助10
2秒前
2秒前
3秒前
yanghq13发布了新的文献求助10
3秒前
烟雨1完成签到,获得积分10
4秒前
DenM7发布了新的文献求助10
4秒前
专注丹寒发布了新的文献求助10
4秒前
酷波er应助hume采纳,获得30
5秒前
聪明宛完成签到 ,获得积分10
5秒前
6秒前
Hello应助饱满的曼寒采纳,获得10
7秒前
7秒前
7秒前
张张张发布了新的文献求助30
8秒前
Lucas应助He采纳,获得10
8秒前
汉堡包应助牧云采纳,获得10
8秒前
8秒前
小阿波发布了新的文献求助30
11秒前
Simon发布了新的文献求助10
12秒前
葵魁发布了新的文献求助10
12秒前
Guoqiang发布了新的文献求助10
13秒前
紫腚能行发布了新的文献求助10
13秒前
Bella完成签到,获得积分10
13秒前
呵呵哒发布了新的文献求助10
14秒前
15秒前
HY完成签到,获得积分10
15秒前
mushrooms119完成签到,获得积分20
18秒前
苏七完成签到,获得积分10
18秒前
ajhs完成签到,获得积分10
19秒前
领导范儿应助伤心女大采纳,获得10
19秒前
斯文败类应助quanshijie采纳,获得10
19秒前
sam关闭了sam文献求助
20秒前
kk发布了新的文献求助50
20秒前
23秒前
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083106
求助须知:如何正确求助?哪些是违规求助? 2736348
关于积分的说明 7540888
捐赠科研通 2385732
什么是DOI,文献DOI怎么找? 1265111
科研通“疑难数据库(出版商)”最低求助积分说明 612929
版权声明 597702