Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT

医学 特发性肺纤维化 队列 肺动脉高压 比例危险模型 危险系数 纤维化 回顾性队列研究 一致性 肺纤维化 内科学 放射科 置信区间
作者
Krit Dwivedi,Michael Sharkey,Liam Delaney,Samer Alabed,Smitha Rajaram,Catherine Hill,Christopher Johns,Alexander Rothman,Michail Mamalakis,A. A. Roger Thompson,Jim M. Wild,Robin Condliffe,David G. Kiely,Andrew J. Swift
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (2) 被引量:7
标识
DOI:10.1148/radiol.231718
摘要

Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60–75 years]; 128 women) and 246 (median age, 65 years [IQR, 51–72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ryan123发布了新的文献求助10
刚刚
董球球发布了新的文献求助10
2秒前
nglmy77完成签到 ,获得积分10
2秒前
2秒前
2秒前
jia完成签到 ,获得积分10
3秒前
5秒前
5秒前
乐正三问完成签到,获得积分10
5秒前
haha完成签到,获得积分20
5秒前
sunyanghu369完成签到,获得积分10
6秒前
6秒前
老仙翁完成签到,获得积分10
7秒前
kiki647发布了新的文献求助10
8秒前
dd完成签到,获得积分20
8秒前
zxlllll完成签到,获得积分20
8秒前
丫丫完成签到,获得积分10
9秒前
sunyanghu369发布了新的文献求助10
9秒前
虚幻芷文应助赫赫采纳,获得10
9秒前
非泥发布了新的文献求助200
10秒前
凉雨渲发布了新的文献求助10
11秒前
dd发布了新的文献求助20
11秒前
11秒前
脑洞疼应助ZhouXB采纳,获得10
11秒前
贺小刚完成签到,获得积分10
12秒前
cc完成签到,获得积分10
12秒前
12秒前
打打应助hjygzv采纳,获得10
12秒前
偶阵雨完成签到,获得积分20
13秒前
Akim应助开心就好采纳,获得10
13秒前
徐什么宝完成签到,获得积分10
15秒前
乌苏发布了新的文献求助10
15秒前
钢铁侠完成签到,获得积分10
15秒前
科研菜狗发布了新的文献求助20
18秒前
威武忆山发布了新的文献求助10
18秒前
碎尘发布了新的文献求助10
18秒前
18秒前
钢铁侠发布了新的文献求助10
18秒前
星辰大海应助糖串串采纳,获得10
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441830
求助须知:如何正确求助?哪些是违规求助? 3038350
关于积分的说明 8971755
捐赠科研通 2726714
什么是DOI,文献DOI怎么找? 1495641
科研通“疑难数据库(出版商)”最低求助积分说明 691255
邀请新用户注册赠送积分活动 688302