Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT

医学 特发性肺纤维化 队列 肺动脉高压 比例危险模型 危险系数 纤维化 回顾性队列研究 一致性 肺纤维化 内科学 放射科 置信区间
作者
Krit Dwivedi,Michael Sharkey,Liam Delaney,Samer Alabed,Smitha Rajaram,Catherine Hill,Christopher Johns,Alexander Rothman,Michail Mamalakis,A. A. Roger Thompson,Jim M. Wild,Robin Condliffe,David G. Kiely,Andrew J. Swift
出处
期刊:Radiology [Radiological Society of North America]
卷期号:310 (2) 被引量:9
标识
DOI:10.1148/radiol.231718
摘要

Background There is clinical need to better quantify lung disease severity in pulmonary hypertension (PH), particularly in idiopathic pulmonary arterial hypertension (IPAH) and PH associated with lung disease (PH-LD). Purpose To quantify fibrosis on CT pulmonary angiograms using an artificial intelligence (AI) model and to assess whether this approach can be used in combination with radiologic scoring to predict survival. Materials and Methods This retrospective multicenter study included adult patients with IPAH or PH-LD who underwent incidental CT imaging between February 2007 and January 2019. Patients were divided into training and test cohorts based on the institution of imaging. The test cohort included imaging examinations performed in 37 external hospitals. Fibrosis was quantified using an established AI model and radiologically scored by radiologists. Multivariable Cox regression adjusted for age, sex, World Health Organization functional class, pulmonary vascular resistance, and diffusing capacity of the lungs for carbon monoxide was performed. The performance of predictive models with or without AI-quantified fibrosis was assessed using the concordance index (C index). Results The training and test cohorts included 275 (median age, 68 years [IQR, 60–75 years]; 128 women) and 246 (median age, 65 years [IQR, 51–72 years]; 142 women) patients, respectively. Multivariable analysis showed that AI-quantified percentage of fibrosis was associated with an increased risk of patient mortality in the training cohort (hazard ratio, 1.01 [95% CI: 1.00, 1.02]; P = .04). This finding was validated in the external test cohort (C index, 0.76). The model combining AI-quantified fibrosis and radiologic scoring showed improved performance for predicting patient mortality compared with a model including radiologic scoring alone (C index, 0.67 vs 0.61; P < .001). Conclusion Percentage of lung fibrosis quantified on CT pulmonary angiograms by an AI model was associated with increased risk of mortality and showed improved performance for predicting patient survival when used in combination with radiologic severity scoring compared with radiologic scoring alone. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利白竹完成签到 ,获得积分10
2秒前
3秒前
清爽白薇完成签到,获得积分10
4秒前
英姑应助爱听歌笑寒采纳,获得10
5秒前
顺其自然完成签到 ,获得积分10
6秒前
6秒前
Chandler完成签到,获得积分10
7秒前
清脆松发布了新的文献求助10
8秒前
甜甜乌冬面完成签到,获得积分10
8秒前
火山完成签到,获得积分10
11秒前
瑞仔完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
潜水钟完成签到,获得积分20
13秒前
橙子爱吃火龙果完成签到 ,获得积分10
14秒前
zhangyulu完成签到 ,获得积分10
14秒前
清脆松完成签到,获得积分10
16秒前
脑洞疼应助火山采纳,获得10
16秒前
黄小柒发布了新的文献求助10
17秒前
17秒前
he0570完成签到 ,获得积分10
18秒前
18秒前
英俊的铭应助gfbh采纳,获得10
19秒前
orixero应助JACk采纳,获得20
23秒前
fkljdaopk发布了新的文献求助10
23秒前
弹剑作歌完成签到,获得积分10
23秒前
乔诶次完成签到 ,获得积分10
24秒前
黄小柒完成签到,获得积分20
25秒前
Greetdawn完成签到,获得积分10
25秒前
九九完成签到,获得积分10
25秒前
27秒前
bkagyin应助爱听歌笑寒采纳,获得10
27秒前
单纯乞完成签到,获得积分10
28秒前
Y2024完成签到,获得积分10
28秒前
薄荷和晓晓完成签到,获得积分10
28秒前
展会恩完成签到,获得积分10
28秒前
28秒前
30秒前
内澈发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761109
求助须知:如何正确求助?哪些是违规求助? 3305034
关于积分的说明 10131962
捐赠科研通 3019022
什么是DOI,文献DOI怎么找? 1657921
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754604